scholarly journals One Week of CDAHFD Induces Steatohepatitis and Mitochondrial Dysfunction with Oxidative Stress in Liver

2021 ◽  
Vol 22 (11) ◽  
pp. 5851
Author(s):  
Takehito Sugasawa ◽  
Seiko Ono ◽  
Masato Yonamine ◽  
Shin-ichiro Fujita ◽  
Yuki Matsumoto ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.

Author(s):  
Takehito Sugasawa ◽  
Seiko Ono ◽  
Masato Yonanine ◽  
Shin-ichiro Fujita ◽  
Yuki Matsumoto ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient L-amino acid-defined high fat diet (CDHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports about the effects on mice of being fed CDAHFD for a long time, 1 to 3 months. However, the effect of this diet over a short period has been unknown. Therefore, we examined the effect of one week of feeding CDAHFD on the mouse liver. Feeding this diet for only one week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis and cirrhosis. Additionally, it was demonstrated that mitochondrial respiration is significantly impaired with severe oxidative stress in the liver by CDAHFD, associated with a decreasing mitochondrial DNA copy number and complexes-proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that one week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of the NASH in humans.


2019 ◽  
Vol 38 (7) ◽  
pp. 823-832 ◽  
Author(s):  
MR Haque ◽  
SH Ansari

Nonalcoholic fatty liver disease (NAFLD) is caused by fat accumulation and is related with obesity and oxidative stress. In this study, we investigated the effect of cuminaldehyde on NAFLD in rats fed a high fat diet (HFD). Male Wistar rats were fed a HFD for 42 days to induce NAFLD. The progression of NAFLD was evaluated by histology and measuring liver enzymes (alanine transaminase and aspartate transaminase), serum and hepatic lipids (total triglycerides and total cholesterol), and oxidative stress markers (thiobarbituric acid reactive substances, glutathione, superoxide dismutase, and catalase). The HFD feeding increased the liver weight and caused NAFLD, liver steatosis, hyperlipidemia, oxidative stress, and elevated liver enzymes. Administration of cuminaldehyde ameliorated the changes in hepatic morphology and liver weight, decreased levels of liver enzymes, and inhibited lipogenesis. Our findings suggest that cuminaldehyde could improve HFD-induced NAFLD via abolishment of hepatic oxidative damage and hyperlipidemia. Cuminaldehyde might be considered as a potential aromatic compound in the treatment of NAFLD and obesity through the modulation of lipid metabolism.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Aein Azarang ◽  
Omid Farshad ◽  
Mohammad Mehdi Ommati ◽  
Akram Jamshidzadeh ◽  
Reza Heidari ◽  
...  

Background. Treating nonalcoholic fatty liver disease (NAFLD) is considered one of the public health priorities in the past decade. So far, probiotics have represented promising results in controlling the signs and symptoms of NAFLD. However, attempts to find the ideal probiotic strain are still ongoing. The present study is designed to find the best strain amongst suitable probiotic strains according to their ability to ameliorate histopathological and oxidative stress biomarkers in hepatic steatosis-induced rats. Methods. Initially, four probiotics species, including Lactobacillus (L.) acidophilus, L. casei, L. reuteri, and Bacillus coagulans, were cultured and prepared as a lyophilized powder for animals. The experiment lasted for fifty days. Initially, hepatic steatosis was induced by excessive ingestion of D-fructose in rats for eight weeks, followed by eight weeks of administering probiotics and D-fructose concurrently. Forty-two six-week-old male rats were alienated to different groups and were supplemented with different probiotics ( 1 ∗ 10 9   CFU in 500 mL drinking water). After eight weeks, blood and liver samples were taken for further evaluation, and plasma and oxidative stress markers corresponding to liver injuries were examined. Results. Administration of probiotics over eight weeks reversed hepatic and blood triglyceride concentration and blood glucose levels. Also, probiotics significantly suppressed markers of oxidative stress in the liver tissue. Conclusions. Although some of the single probiotic formulations were able to mitigate oxidative stress markers, mixtures of probiotics significantly ameliorated more symptoms in the NAFLD animals. This enhanced effect might be due to probiotics’ cumulative potential to maintain oxidative stress and deliver improved lipid profiles, liver function markers, and inflammatory markers.


2015 ◽  
Vol 308 (2) ◽  
pp. E97-E110 ◽  
Author(s):  
Guangzhi Chen ◽  
Renfan Xu ◽  
Shasha Zhang ◽  
Yinna Wang ◽  
Peihua Wang ◽  
...  

Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti-inflammatory, antiapoptotic, and antioxidatant effects, and cardiovascular protection. Liver has abundant epoxygenase expression and high levels of EET production; however, the roles of epoxygenases in liver diseases remain to be elucidated. In this study, we investigated the protection against high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice with endothelial-specific CYP2J2 overexpression (Tie2-CYP2J2-Tr). After 24 wk of high-fat diet, Tie2-CYP2J2-Tr mice displayed attenuated NAFLD compared with controls. Tie2-CYP2J2-Tr mice showed significantly decreased plasma triglyceride levels and liver lipid accumulation, improved liver function, reduced inflammatory responses, and less increase in hepatic oxidative stress than wild-type control mice. These effects were associated with inhibition of NF-κB/JNK signaling pathway activation and enhancement of the antioxidant defense system in Tie2-CYP2J2-Tr mice in vivo. We also demonstrated that 14,15-EET treatment protected HepG2 cells against palmitic acid-induced inflammation and oxidative stress. 14,15-EET attenuated palmitic acid-induced changes in NF-κB/JNK signaling pathways, malondialdehyde generation, glutathione levels, reactive oxygen species production, and NADPH oxidase and antioxidant enzyme expression in HepG2 cells in vitro. Together, these results highlight a new role for CYP epoxygenase-derived EETs in lipotoxicity-related inflammation and oxidative stress and reveal a new molecular mechanism underlying EETs-mediated anti-inflammatory and antioxidant effects that could aid in the design of new therapies for the prevention and treatment of NAFLD.


2019 ◽  
Vol 27 (1) ◽  
pp. 67-73
Author(s):  
Hina Younus ◽  
Sumbul Ahmad ◽  
Md. Fazle Alam

Background: Reactive aldehydes are involved in diseases associated with oxidative stress, including diabetes. Human salivary aldehyde dehydrogenase (hsALDH) presumably protects us from many toxic ingredient/contaminant aldehydes present in food. Objective: This study aimed to probe the activity of hsALDH in patients with diabetes and than to correlate it with various oxidative stress markers in the saliva. Methods: The saliva samples were collected from total 161 diabetic patients from Rajiv Gandhi Centre for Diabetes, Jawaharlal Nehru Medical College (JNMC), AMU, Aligarh, (India). HsALDH activity and markers of oxidative stress [8-hydroxydeoxyguanosine (8-OHDG), malondialdehyde (MDA) and advanced glycation end products (AGEs)] were measured in the saliva samples. Results: Patients with early stage of diabetes had higher activity of hsALDH when compared with the control group. As the history of diabetes increases, the activity of the enzyme decreases and also higher oxidative stress markers (8-OHDG, MDA and AGEs) are detected in the saliva samples. Negative significant correlation between hsALDH activity and oxidative stress markers were observed (p <0.0001). Conclusion: The activity of hsALDH increases in early stages of diabetes most probably to counter the increased oxidative stress associated with diabetes. However, in later stages of diabetes, the activity of the enzyme decreases, possibly due to its inactivation resulting from glycation.


2014 ◽  
Vol 6 (1) ◽  
pp. 130 ◽  
Author(s):  
Nathalie Auberval ◽  
Stéphanie Dal ◽  
William Bietiger ◽  
Michel Pinget ◽  
Nathalie Jeandidier ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1267
Author(s):  
Chwan-Li Shen ◽  
Sivapriya Ramamoorthy ◽  
Gurvinder Kaur ◽  
Jannette M. Dufour ◽  
Rui Wang ◽  
...  

Obesity and its related complications are a world-wide health problem. Dietary tocotrienols (TT) have been shown to improve obesity-associated metabolic disorders, such as hypercholesterolemia, hyperglycemia, and gut dysbiosis. This study examined the hypothesis that the antioxidant capacity of TT alters metabolites of oxidative stress and improves systemic metabolism. C57BL/6J mice were fed either a high-fat diet (HFD control) or HFD supplemented with 800 mg annatto-extracted TT/kg (HFD+TT800) for 14 weeks. Sera from obese mice were examined by non-targeted metabolite analysis using UHPLC/MS. Compared to the HFD group, the HFD+TT800 group had higher levels of serum metabolites, essential amino acids (lysine and methionine), sphingomyelins, phosphatidylcholine, lysophospholipids, and vitamins (pantothenate, pyridoxamine, pyridoxal, and retinol). TT-treated mice had lowered levels of serum metabolites, dicarboxylic fatty acids, and inflammatory/oxidative stress markers (trimethylamine N-oxide, kynurenate, 12,13-DiHOME, and 13-HODE + 9-HODE) compared to the control. The results suggest that TT supplementation lowered inflammation and oxidative stress (oxidized glutathione and GSH/GSSH) and improved macronutrient metabolism (carbohydrates) in obese mice. Thus, TT actions on metabolites were beneficial in reducing obesity-associated hypercholesterolemia/hyperglycemia. The effects of a non-toxic dose of TT in mice support the potential for clinical applications in obesity and metabolic disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Polyana C. Marinho ◽  
Aline B. Vieira ◽  
Priscila G. Pereira ◽  
Kíssila Rabelo ◽  
Bianca T. Ciambarella ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document