scholarly journals Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

2014 ◽  
Vol 277 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Lata Kaphalia ◽  
Nahal Boroumand ◽  
Ju Hyunsu ◽  
Bhupendra S. Kaphalia ◽  
William J. Calhoun
Author(s):  
Mukund P Srinivasan ◽  
Kamlesh K Bhopale ◽  
Anna A Caracheo ◽  
Lata Kaphalia ◽  
Bin Gong ◽  
...  

Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (w/v) EtOH for three months. One week before the euthanization, chronic EtOH fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, endoplasmic reticulum (ER)/oxidative stress were examined using H & E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH fed groups of ADH- vs. ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH fed groups of ADH- vs. ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.


2017 ◽  
Vol 41 (10) ◽  
pp. 1675-1685 ◽  
Author(s):  
Kamlesh K. Bhopale ◽  
Samir M. Amer ◽  
Lata Kaphalia ◽  
Kizhake V. Soman ◽  
John E. Wiktorowicz ◽  
...  

2018 ◽  
Vol 104 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Samir M. Amer ◽  
Kamlesh K. Bhopale ◽  
Ramu D. Kakumanu ◽  
Vsevolod L. Popov ◽  
Bill A. Rampy ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yang Chen ◽  
Fuping Zhang ◽  
Di Wang ◽  
Lan Li ◽  
Haibo Si ◽  
...  

Diabetes affects a variety of organs such as the kidneys, eyes, and liver, and there is increasing evidence that the lung is also one of the target organs of diabetes and imbalance of Sirt3-mediated stress responses such as inflammation, oxidative stress, apoptosis, autophagy, and ER stress may contribute to diabetic lung fibrosis. Although previous studies have reported that mesenchymal stem cells (MSCs) have beneficial effects on various diabetic complications, the effect and mechanisms of MSCs on diabetes-induced lung injury are not clear. In this study, the STZ-induced diabetes model was constructed in rats, and the effect and potential mechanisms of bone marrow MSCs on diabetic lung fibrosis were investigated. The results revealed that fibrotic changes in the lung were successfully induced in the diabetic rats, while MSCs significantly inhibited or even reversed the changes. Specifically, MSCs upregulated the expression levels of Sirt3 and SOD2 and then activated the Nrf2/ARE signaling pathway, thereby controlling MDA, GSH content, and iNOS and NADPH oxidase subunit p22phox expression levels in the lung tissue. Meanwhile, high levels of Sirt3 and SOD2 induced by MSCs reduced the expression levels of IL-1β, TNF-α, ICAM-1, and MMP9 by suppressing the NF-κB/HMGB1/NLRP3/caspase-1 signaling pathway, as well as regulating the expression levels of cleaved caspasese-3, Bax, and Bcl2 by upregulating the expression level of P-Akt, thereby inhibiting the apoptosis of the lung tissue. In addition, MSCs also regulated the expression levels of LC3, P62, BiP, Chop, and PERK, thereby enhancing autophagy and attenuating endoplasmic reticulum stress. Taken together, our results suggest that MSCs effectively attenuate diabetic lung fibrosis via adjusting Sirt3-mediated responses, including inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum stress, providing a theoretical foundation for further exploration of MSC-based diabetic therapeutics.


2015 ◽  
Vol 21 ◽  
pp. 85-86
Author(s):  
William Kurban ◽  
Salma Makhoul Ahwach ◽  
Melanie Thomas ◽  
Luisa Onsteed-Haas ◽  
Michael Haas

2019 ◽  
Vol 19 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Wenjiao Shi ◽  
Zhixin Guo ◽  
Ruixia Yuan

Background and Objective: This study investigated whether rapamycin has a protective effect on the testis of diabetic rats by regulating autophagy, endoplasmic reticulum stress, and oxidative stress. Methods: Thirty male Sprague-Dawley rats were randomly divided into three groups: control, diabetic, and diabetic treated with rapamycin, which received gavage of rapamycin (2mg.kg-1.d-1) after induction of diabetes. Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ, 65mg.Kg-1). All rats were sacrificed at the termination after 8 weeks of rapamycin treatment. The testicular pathological changes were determined by hematoxylin and eosin staining. The protein or mRNA expression of autophagy-related proteins (Beclin1, microtubule-associated protein light chain 3 (LC3), p62), ER stress marked proteins (CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), caspase-12), oxidative stress-related proteins (p22phox, nuclear factor erythroid2-related factor 2 (Nrf2)) and apoptosis-related proteins (Bax, B cell lymphoma-2 (Bcl-2)) were assayed by western blot or real-time fluorescence quantitative PCR. Results: There were significant pathological changes in the testes of diabetic rats. The expression of Beclin1, LC3, Nrf2, Bcl-2 were significantly decreased and p62, CHOP, caspase12, p22phox, and Bax were notably increased in the testis of diabetic rats (P <0.05). However, rapamycin treatment for 8 weeks significantly reversed the above changes in the testis of diabetic rats (P <0.05). Conclusion: Rapamycin appears to produce a protective effect on the testes of diabetic rats by inducing the expression of autophagy and inhibiting the expression of ER-stress, oxidative stress, and apoptosis.


1989 ◽  
Vol 264 (10) ◽  
pp. 5593-5597
Author(s):  
C Norsten ◽  
T Cronholm ◽  
G Ekström ◽  
J A Handler ◽  
R G Thurman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document