Recent applications of molecular imprinted polymers for enantio-selective recognition

Talanta ◽  
2013 ◽  
Vol 106 ◽  
pp. 45-59 ◽  
Author(s):  
Won Jo Cheong ◽  
Faiz Ali ◽  
Ji Ho Choi ◽  
Jin OoK Lee ◽  
Kim Yune Sung
Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 106
Author(s):  
Joana N. Martins ◽  
João Carlos Lima ◽  
Nuno Basílio

To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.


2006 ◽  
Vol 53 (11) ◽  
pp. 205-212 ◽  
Author(s):  
M. Le Noir ◽  
B. Guieysse ◽  
B. Mattiasson

This work was conducted to study the potential of molecularly imprinted polymers (MIPs) for the removal of oestradiol at trace concentrations (1 ppm–1 ppb). An MIP synthesised with 17β-oestradiol as template was compared to non-imprinted polymers (NIP) synthesised under the same conditions but without template, a commercial C18 extraction phase and granulated activated carbon. At 1 ppb oestradiol was recovered by 98±2% when using the MIP, compared to 90±1, 79±1, and 84±2% when using the NIP, a C18 phase, or granulated activated carbon, respectively. According to these levels, the MIP was capable of producing an effluent with a quality 5–10 times higher than the other materials. The same levels of oestradiol recovery were achieved with the MIP when supplying 17β-oestradiol at 0.1 ppm. Phenolic compounds added as interferences bound less to the MIP than to the NIP, confirming the selectivity of the MIP. Oestradiol biodegradation was also demonstrated at high concentrations (50 ppm), showing the pollutants can be safely destructed after being enriched by molecular extraction. This study demonstrates the potential of molecular imprinted polymers as a highly efficient specific adsorbent for the removal of trace contaminants.


2012 ◽  
Vol 209 (5) ◽  
pp. 905-910 ◽  
Author(s):  
Jan Alenus ◽  
Pavel Galar ◽  
Anitha Ethirajan ◽  
Frederik Horemans ◽  
Ans Weustenraed ◽  
...  

2014 ◽  
Vol 809-810 ◽  
pp. 297-301
Author(s):  
Ping Rui Meng ◽  
Liang Bo Li

In order to selectively separate luteolin from its crude solution, we synthesized luteolin molecular imprinted polymers (LMIP) with high recognition specificity for luteolin, using an imprinting technique. Luteolin was used as template, methanol as solvent, and N,N’-methylenebisacrylamide (MBAA) as the cross-linking. Then prepared LMIP were characterized and evaluated by scanning electron microscope (SEM) and equilibrium absorption experiments. The results showed that the cavities matching with the template molecules in size and structure were present in the LMIP. Adsorption dynamics analysis suggested that, when the adsorption time reached 4 h, the adsorption process had reached balance and the adsorption capacity was at steady state. The selective adsorption amount reached at 35.65 umol/g for the LMIP, while a lower value of 11.68 umol/g for the blank polymer (i.e. nontemplated). Relative to the corresponding blank polymer, LMIP had an excellent recognition to luteolin in methanol solution. Keywords: Molecular imprinting, Molecular recognition, Adsorbent, Luteolin


Sign in / Sign up

Export Citation Format

Share Document