Identification and tectonic implications of nano-particle quartz (<50nm) by synchrotron X-ray diffraction in the Chelungpu fault gouge, Taiwan

2014 ◽  
Vol 619-620 ◽  
pp. 36-43 ◽  
Author(s):  
Yu-Min Chou ◽  
Sheng-Rong Song ◽  
Tsung-Ming Tsao ◽  
Chao-Sung Lin ◽  
Min-Kung Wang ◽  
...  
2017 ◽  
Vol 28 (1) ◽  
pp. 149
Author(s):  
Baha'a A. Al-Hilli

The objective of this study is to assess the influence of nano-particle Fe2O3 thin film thickness on some physical properties which were prepared by magnetron DC- sputtering on glass substrate at room temperature. The structure was tested with X-Ray diffraction and it was to be amorphous and to become single crystal with recognized peak in (003) after annealing at temperature 500oC. The physical properties as a function of deposition parameters and then film thickness were studied. The optical properties such as absorbance, energy gap and some optical constants are measured and found that of about (3eV) energy gap.


2013 ◽  
Vol 669 ◽  
pp. 30-33
Author(s):  
Yue Cheng ◽  
Shun Long Pan ◽  
Yuan Zhou

Silicalite-2 zeolite was hydrothermally synthesized and Mn0.2Co0.8Fe2O4 magnetic nano-particle based on the Silicalite-2 zeolite carrier was prepared by a coprecipitation-impregnation method. The morphologies and microstructures of synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The heterogeneous catalytic oxidation electrolysis system of Mn0.2Co0.8Fe2O4/silicalite-2 was built by dispersing the catalysts in glass reactor for treating cationic brilliant red X-5GN wastewater. The SEM images showed that the structure of silicalite-2 zeolite remained its original after the introduction of Mn0.2Co0.8Fe2O4 magnetic particle. The XRD patterns revealed that Mn0.2Co0.8Fe2O4 oxides could not be observed on the surface of the silicalite-2 zeolite carrier. The experimental results showed that the dye wastewater with a satisfied decolorization rate (79.1%) was obtained when the initial pH was 6, the magnetic catalyst dosage was 0.4g/L, the electrolysis voltage was 2V, electrolytic time was 45min, respectively.


2012 ◽  
Vol 05 ◽  
pp. 615-621
Author(s):  
S.M. LARI BAGHAL ◽  
M. HEYDARZADEH SOHI ◽  
A. AMADEH

Ni - Co / SiC nano-composites were prepared by electrodeposition in modified watts bath. The average size of SiC particles was 50 nm. In this study the effect of nano-particle incorporation, Co 2+ and saccharin concentration in electroplating bath on morphology and mechanical properties of Ni - Co / SiC nano-composites were investigated. The electrodeposits were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Vickers micro-hardness and tensile tests. The results indicate that an increase in Co 2+ and saccharin concentration in electrolyte lead to a decrease in size of SiC agglomerates and grain size refining of matrix and improvement in mechanical properties. The hardness, tensile and yield strengths of the nano-composite material with nano-structure matrixes were higher than those for microcrystalline ones.


2015 ◽  
Vol 778 ◽  
pp. 183-186
Author(s):  
Yan Xia Han ◽  
Qian Nan Li ◽  
Hai Yun Shen ◽  
Qiu Hua Yang

Ce3+doped cubic KLaF4system was synthesized by co-precipitation method. The sample was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectrophotometer and fluorescence spectrophotometer. The result indicated the nanoparticle diameter of KLaF4:Ce3+was 12.5 nm. The KLaF4:Ce3+had a stronger absorption at 250 nm, which could be explained by d elecronic transition of Ce3+. The maximum emission peak of KLaF4:Ce3+was 355 nm in its luminescent spectrum, and emission band of Ce3+also belonged to 5d→4f transition.


2008 ◽  
Vol 55-57 ◽  
pp. 809-812 ◽  
Author(s):  
V. Kosalathip ◽  
T. Kumpeerapun ◽  
S. Migot ◽  
B. Lenoir ◽  
A. Dauscher

Nanopowders of n-type (Bi0.95Sb0.05)2(Te0.95Se0.05)3 and p-type (Bi0.2Sb0.8)2Te3 have been synthesized by laser fracture of micron-sized powders in water. These alloys are the best conventional thermoelectric materials for use in room temperature applications. The nanopowders have been characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The nanopowders have been mechanically mixed in different ratios with the micron sized powders. These mixtures have then been cold pressed in order to perform thermoelectric characterization and to see the influence of nano-particle inclusions on the transport properties.


2010 ◽  
Vol 18 (12) ◽  
pp. 13271 ◽  
Author(s):  
Ashley F. Stein ◽  
Jan Ilavsky ◽  
Rael Kopace ◽  
Eric E. Bennett ◽  
Han Wen

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Sign in / Sign up

Export Citation Format

Share Document