scholarly journals Morphological study of human facial fascia and subcutaneous tissue structure by region through SEM observation

2020 ◽  
Vol 67 ◽  
pp. 101437
Author(s):  
Kaori Amano ◽  
Michiko Naito ◽  
Masato Matsuo
1994 ◽  
Vol 53 (9) ◽  
pp. 1203-1209 ◽  
Author(s):  
Masahiro Yoshinobu ◽  
Mitsuhiro Morita ◽  
Mitsuo Higuchi ◽  
Isao Sakata

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Author(s):  
P. J. Melnick ◽  
J. W. Cha ◽  
E. Samouhos

Spontaneous mammary tumors in females of a high tumor strain of C3H mice were cut into small fragments that were Implanted into the subcutaneous tissue of the back of males of the same strain, where they grew as transplantable tumors. When about Cm. In diameter daily fractional radiation was begun, applied to the tumors, the rest of the body being shielded by a lead shield. Two groups were treated with 150 and 200 r X-ray dally, of half value layer 0.6mm. copper; a third group was treated with 500 r cobalt radiation dally. The primary purpose was to examine the enzyme changes during radiation, with histochemlcal technics.


Author(s):  
Susan B.G. Debaene ◽  
John S. Gardner ◽  
Phil S. Allen

The coleorhiza is a nonvascular sheath that encloses the embryonic radicle in Poaceae, and is generally the first tissue to emerge during germination. Delicate hairlike extensions develop from some coleorhiza cells prior to radicle emergence. Similar to root hairs, coleorhiza hairs are extremely sensitive to desiccation and are damaged by exposure to negative water potentials. The coleorhiza of Lolium perenne is somewhat spherical when first visible, after which a knob forms at a right angle to the caryopsis due to inner pressure from the elongating radicle. This knob increases in length until the radicle finally punctures the coleorhiza. Standard fixation procedures cause severe desiccation of coleorhiza cells and hairs, making morphological study of the coleorhiza difficult. This study was conducted to determine a more successful process for coleorhiza preservation.


VASA ◽  
2011 ◽  
Vol 40 (4) ◽  
pp. 271-279 ◽  
Author(s):  
Wagner

Lymphedema and lipedema are chronic progressive disorders for which no causal therapy exists so far. Many general practitioners will rarely see these disorders with the consequence that diagnosis is often delayed. The pathophysiological basis is edematization of the tissues. Lymphedema involves an impairment of lymph drainage with resultant fluid build-up. Lipedema arises from an orthostatic predisposition to edema in pathologically increased subcutaneous tissue. Treatment includes complex physical decongestion by manual lymph drainage and absolutely uncompromising compression therapy whether it is by bandage in the intensive phase to reduce edema or with a flat knit compression stocking to maintain volume.


VASA ◽  
2015 ◽  
Vol 44 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Mandy Becker ◽  
Tom Schilling ◽  
Olga von Beckerath ◽  
Knut Kröger

Background: To clarify the clinical use of sonography for differentiation of edema we tried to answer the question whether a group of doctors can differentiate lymphedema from cardiac, hepatic or venous edema just by analysing sonographic images of the edema. Patients and methods: 38 (70 ± 12 years, 22 (58 %) females) patients with lower limb edema were recruited according the clinical diagnosis: 10 (26 %) lymphedema, 16 (42 %) heart insufficiency, 6 (16 %) venous disorders, 6 (16 %) chronic hepatic disease. Edema was depicted sonographically at the most affected leg in a standardised way at distal and proximal calf. 38 sets of images were anonymised and send to 5 experienced doctors. They were asked whether they can see criteria for lymphedema: 1. anechoic gaps, 2. horizontal gaps and 3. echoic rims. Results: Accepting an edema as lymphedema if only one doctor sees at least one of the three criteria for lymphatic edema on each single image all edema would be classified as lymphatic. Accepting lymphedema only if all doctors see at least one of the three criteria on the distal image of the same patient 80 % of the patients supposed to have lymphedema are classified as such, but also the majority of cardiac, venous and hepatic edema. Accepting lymphedema only if all doctors see all three criteria on the distal image of the same patients no edema would be classified as lymphatic. In addition we separated patients by Stemmers’ sign in those with positive and negative sign. The interpretation of the images was not different between both groups. Conclusions: Our analysis shows that it is not possible to differentiate lymphedema from other lower limb edema sonographically.


Sign in / Sign up

Export Citation Format

Share Document