Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes

Author(s):  
Yanping Wang ◽  
Aiqian Ye ◽  
Yingying Hou ◽  
Yangyi Jin ◽  
Xiankang Xu ◽  
...  
2020 ◽  
Vol 21 (23) ◽  
pp. 9159
Author(s):  
Yanzhen Sun ◽  
Xiaodong Jing ◽  
Xiaoli Ma ◽  
Yinglong Feng ◽  
Hao Hu

Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.


Author(s):  
F.L. Xiong ◽  
H.B. Chen ◽  
X.L. Chang ◽  
Y.J. Yang ◽  
H.B. Xu ◽  
...  

2021 ◽  
Author(s):  
Mahmoud Ghorbani ◽  
Ricardo Santos Aleman

With recent advances in medical and nutrition sciences, functional foods and nutraceuticals fortified with natural polyphenols have received a lot of attention from both health professionals and the common population in the last few years since their chemical structure allows them to exert various health effects (e.g., antioxidant, anti-inflammatory, immune, antitumor and prebiotic properties). Nonetheless, there are several hurdles to applications of polyphenols in the food system. The most critical hurdle includes polyphenols’ tendency to lose their anti-oxidative properties or bioactive functionalities during food processing, as well as inclusion of poly-phenol compounds may impart an astringent or bitter taste, or introduce a degree of brown coloring causing serious sensorial impacts on food products. On this basis, interest has increased in understanding the development of new and efficient food vehicles as delivery systems for polyphenols-based functional ingredients. In this context, one approach that could augment the growth of polyphenols-based functional foods is electro-hydrodynamic processing, as the most versatile method to produce nanoscale fibers or particulates suitable for application in food technology by encapsulation to form nanoscale delivery systems.


2020 ◽  
Vol 17 (9) ◽  
pp. 1269-1288
Author(s):  
Qirong Tong ◽  
Na Qiu ◽  
Jianbo Ji ◽  
Lei Ye ◽  
Guangxi Zhai

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3984
Author(s):  
Rubén Domínguez ◽  
Mirian Pateiro ◽  
Paulo E. S. Munekata ◽  
David Julian McClements ◽  
José M. Lorenzo

The development of plant-based functional food ingredients has become a major focus of the modern food industry as a response to changes in consumer attitudes. In particular, many consumers are switching to a plant-based diet because of their concerns about animal-derived foods on the environment, human health, and animal welfare. There has therefore been great interest in identifying, isolating, and characterizing functional ingredients from botanical sources, especially waste streams from food and agricultural production. However, many of these functional ingredients cannot simply be incorporated into foods because of their poor solubility, stability, or activity characteristics. In this article, we begin by reviewing conventional and emerging methods of extracting plant-based bioactive agents from natural resources including ultrasound-, microwave-, pulsed electric field- and supercritical fluid-based methods. We then provide a brief overview of different methods to characterize these plant-derived ingredients, including conventional, chromatographic, spectroscopic, and mass spectrometry methods. Finally, we discuss the design of plant-based delivery systems to encapsulate, protect, and deliver these functional ingredients, including micelles, liposomes, emulsions, solid lipid nanoparticles, and microgels. The potential benefits of these plant-based delivery systems are highlighted by discussing their use for incorporating functional ingredients into traditional meat products. However, the same technologies could also be employed to introduce functional ingredients into plant-based meat analogs.


2021 ◽  
Vol 28 ◽  
Author(s):  
Wei-Wei Ren ◽  
Shi-Hao Xu ◽  
Li-Ping Sun ◽  
Kun Zhang

: Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients’ clinical symptoms and extend the life span. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted therapy. However, due to the complexity and heterogeneity of tumors, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, an ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its ability to enhance efficacy and reduce toxic side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.


Sign in / Sign up

Export Citation Format

Share Document