Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

Toxicology ◽  
2009 ◽  
Vol 258 (2-3) ◽  
pp. 148-156 ◽  
Author(s):  
Je-Ken Chang ◽  
Ching-Ju Li ◽  
Hsiu-Jun Liao ◽  
Chih-Kuang Wang ◽  
Gwo-Jaw Wang ◽  
...  
2014 ◽  
Vol 17 (1) ◽  
pp. 62-67 ◽  
Author(s):  
Elvira De Luna-Bertos ◽  
Javier Ramos-Torrecillas ◽  
Francisco Javier Manzano-Moreno ◽  
Olga García-Martínez ◽  
Concepción Ruiz

Some nonsteroidal anti-inflammatory drugs (NSAIDs) have adverse effects on bone tissue. The objective of this study was to determine the effect of different doses of dexketoprofen, ketorolac, and metamizole on growth of the osteoblast MG63 cell line. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide spectrophotometry results showed that MG63 cell growth was significantly inhibited after 24 hr of culture with doses of 10, 20, 100, or 1,000 µM of each NSAID and with doses of 0.1, 1, or 5 µM of dexketoprofen and ketorolac but not metamizole. Cell-cycle studies revealed that dexketoprofen and ketorolac treatments significantly arrested the cell cycle in phase G0/G1, increasing the percentage of cells in this phase. Apoptosis/necrosis studies showed significant changes versus control cells, with an increased percentage of cells in apoptosis after treatment with 10, 100, or 1,000 µM of metamizole and after treatment with 1, 10, 100, or 1,000 µM of dexketoprofen or ketorolac. In conclusion, treatment of osteoblast-like cells with high doses of the NSAIDs tested increased not only the percentage of cells in apoptosis but also the percentage of necrotic cells.


Author(s):  
Andressa Gonsioroski ◽  
Daryl D Meling ◽  
Liying Gao ◽  
Michael J Plewa ◽  
Jodi A Flaws

Abstract Iodoacetic acid (IAA) is a water disinfection byproduct that is an ovarian toxicant in vitro. However, information on the effects of IAA on ovarian function in vivo was limited. Thus, we determined whether IAA exposure affects estrous cyclicity, steroidogenesis, and ovarian gene expression in mice. Adult CD-1 mice were dosed with water or IAA (0.5–500 mg/L) in the drinking water for 35–40 days during which estrous cyclicity was monitored for 14 days. Ovaries were analyzed for expression of apoptotic factors, cell cycle regulators, steroidogenic factors, estrogen receptors, oxidative stress markers, and a proliferation marker. Sera were collected to measure pregnenolone, androstenedione, testosterone, estradiol, inhibin B, and follicle-stimulating hormone (FSH) levels. IAA exposure decreased the time that the mice spent in proestrus compared to control. IAA exposure decreased expression of the pro-apoptotic factor Bok, the cell cycle regulator Ccnd2, and borderline decreased expression of the anti-apoptotic factor Bcl2l10, the pro-apoptotic factor Aimf1, and the steroidogenic factor Cyp19a1 compared to control. IAA exposure increased expression of the pro-apoptotic factors Bax and Aimf1, the anti-apoptotic factor Bcl2l10, the cell cycle regulators Ccna2, Ccnb1, Ccne1, and Cdk4, and estrogen receptor Esr1 compared to control. IAA exposure decreased expression of Cat and Sod1, and increased expression of Cat, Gpx, and Nrf2. IAA exposure did not affect expression of Star, Cyp11a1, Cyp17a1, Hsd17b1, Hsd3b1, Esr2 or Ki67 compared to control. IAA exposure decreased estradiol levels, but did not alter other hormone levels compared to control. In conclusion, IAA exposure alters estrous cyclicity, ovarian gene expression, and estradiol levels in mice.


2012 ◽  
Vol 87 (Suppl_1) ◽  
pp. 262-262
Author(s):  
Ayelet Ziv-Gal ◽  
Zelieann R. Craig ◽  
Wei Wang ◽  
Jodi A. Flaws

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5734
Author(s):  
Sittikorn Yoojam ◽  
Atcharaporn Ontawong ◽  
Narissara Lailerd ◽  
Kriangsak Mengamphan ◽  
Doungporn Amornlerdpison

Background: Caulerpa lentillifera (CL) is a green seaweed, and its edible part represents added value as a functional ingredient. CL was dried and extracted for the determination of its active compounds and the evaluation of its biological activities. The major constituents of CL extract (CLE), including tannic acid, catechin, rutin, and isoquercetin, exhibited beneficial effects, such as antioxidant activity, anti-diabetic activity, immunomodulatory effects, and anti-cancer activities in in vitro and in vivo models. Whether CLE has an anti-inflammatory effect and immune response remains unclear. Methods: This study examined the effect of CLE on the inflammatory status and immune response of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms involved therein. RAW264.7 cells were treated with different concentrations of CLE (0.1–1000 µg/mL) with or without LPS (1 µg/mL) for 24 h. Expression and production of the inflammatory cytokines, enzymes, and mediators were evaluated. Results: CLE suppressed expression and production of the pro-inflammatory cytokines IL-6 and TNF-α. Moreover, CLE inhibited expression and secretion of the inflammatory enzyme COX-2 and the mediators PGE2 and NO. CLE also reduced DNA damage. Furthermore, CLE stimulated the immune response by modulating the cell cycle regulators p27, p53, cyclin D2, and cyclin E2. Conclusions: CLE inhibits inflammatory responses in LPS-activated macrophages by downregulating inflammatory cytokines and mediators. Furthermore, CLE has an immunomodulatory effect by modulating cell cycle regulators.


2010 ◽  
Vol 34 (8) ◽  
pp. S50-S50
Author(s):  
Xiaoyan Pan ◽  
Xinmei Zhou ◽  
Guangtao Xu ◽  
Lingfen Miao ◽  
Shuoru Zhu

Sign in / Sign up

Export Citation Format

Share Document