scholarly journals Perfluorooctane sulfonate (PFOS) exposure of bovine oocytes affects early embryonic development at human-relevant levels in an in vitro model

Toxicology ◽  
2021 ◽  
pp. 153028
Author(s):  
Ida Hallberg ◽  
Sara Persson ◽  
Matts Olovsson ◽  
Marc-André Sirard ◽  
Pauliina Damdimopoulou ◽  
...  
2001 ◽  
Vol 13 (6) ◽  
pp. 383 ◽  
Author(s):  
Jin-Tae Chung ◽  
Bruce R. Downey ◽  
Robert F. Casper ◽  
Ri-Cheng Chian

This study examined the fertilization, early developmental competence and capacity for parthenogenetic activation of bovine oocytes matured in vitro after centrifugation. Immature oocytes were cultured in tissue culture medium 199 supplemented with 10% fetal bovine serum and 75 mIU mL–1 FSH + LH at 5% CO2 to facilitate maturation. After culture for 24 or 30 h, the metaphase-II stage oocytes were centrifuged at 3000, 5000, 7000 or 10000g for 5 min before in vitro fertilization or parthenogenetic activation. Frozen–thawed bull semen was used for in vitro fertilization. For parthenogenetic activation, the oocytes were exposed to 20 M calcium ionophore A23187 for 5 min at room temperature. Fertilization rates were not different between control and treatment groups (87.7% v. 74.6%, 73.4%, 75.9% and 76.4% respectively). Also, there were no differences in early embryonic development between control and treatment groups (rates of blastocyst formation were 21.1% v. 20.2%, 28.8%, 31.2% and 24.1% respectively). When the oocytes were centrifuged at various speeds alone, the activation rate of oocytes was significantly higher (P<0.05) in the 10 000g treatment group compared with control (10.8% v. 0.0%). There were no differences in the activation rates of oocytes between control and treatment groups at speeds up to 7000g (70.9% v. 71.9%, 78.3% and 77.2% respectively) after centrifugation and stimulation with Ca2+-ionophore. However, the activation rate of oocytes was significantly higher (P<0.05) in the 10 000g treatment group compared with control (70.9% v. 83.1%). In addition, the percentage of activated oocytes with diploid formation was significantly higher in the oocytes after centrifugation at 10 000g and stimulation with calcium ionophore A23187 than in the control (18.4% v. 7.1%). These results indicate that centrifugation of oocytes matured in vitro has no detrimental effect on fertilization and subsequent early embryonic development. They also indicate that the oocytes might be parthenogenetically activated after centrifugation and that high-speed centrifugation may induce activation of some oocytes. The results suggest that the optimal speed for centrifugation of bovine oocytes might be ≤7000g to enhance the visibility of nuclear elements for further micromanipulation.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4189 ◽  
Author(s):  
Yao Fu ◽  
Jia-Jun Xu ◽  
Xu-Lei Sun ◽  
Hao Jiang ◽  
Dong-Xu Han ◽  
...  

Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC) differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV), MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05), and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc) after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the efficiency ofin vitroembryo culture as well as a theoretical basis for further studying the regulatory mechanisms involved in early embryonic development.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document