Bone Marrow Interaction and Multiple Myeloma - Approximating Reality in Novel High-Throughput Multiple Myeloma Coculture Systems

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2243-2243
Author(s):  
Johannes Waldschmidt ◽  
Dagmar Wider ◽  
Anna Simon ◽  
Andreas R. Thomsen ◽  
Christine Aldrian ◽  
...  

Abstract Introduction: In the past decade, substantial progress has been made in the understanding of multiple myeloma (MM) cell biology and its interaction with the bone marrow microenvironment (BMM). Binding of MM cells to BM stroma cells (BMSCs) alters the expression of SDF-1α and its receptor CXCR4, leading to the secretion of anti-apoptotic cytokines, promoting tumor growth, drug resistance and migration. MM cancer stem cells migrate to endosteal BM niches, where they escape therapies in a quiescent state causing relapse in the course of the disease. The development of novel agents that aim to target the MM and BMM interaction includes drugs as promising as 2nd and 3rdgeneration IMIDs or proteasome inhibitors. Despite these profound advances, the failure rate of preclinically proven cytotoxic single substances is sizeable, as preclinical models often lack the biological, genetic, etiological and immunological properties of the disease (Schüler, Expert. Opin. Biol. Ther. 2013; Kortüm. CLML 2014; Rongvaux. Annu Rev Immunol 2013). Methods & Results: We have previously demonstrated that BM interaction and homing to niches, mediated by the adhesion molecules CXCR4, CD49d and CD44, protect MM cell lines (MMCL) and primary plasma cells (PC) from the cytotoxic effect of anti-MM agents, such as bortezomib (Bor), vorinostat (Vor) and pomalidomide (Pom). Our in vitro and in vivo observed cytotoxic effects from Bor, Vor and Pom confirmed their potent cytotoxicity, whereas cocultivation with M2-10B4 substantially reduced apoptosis and induced tumor protective effects. Additional treatment with the CXCR4 inhibitor AMD3100 blocked CXCR4 in coculture, but left CD49d, CD44 and CD11a widely unchanged. Toxic or therapeutic effects from AMD3100 monotherapy were excluded for the doses used. Comparison of the CXCR4 antibody (ab)-clones 12G5, 44717 and 4G10 revealed that AMD3100 treatment of U266 cells reduced CXCR4 expression with use of 12G5 and 44717, whereas binding of both FITC- and PE-coupled 4G10 was not influenced, making the latter the most reliable for CXCR4 analysis. Use of image cytometry (IC) allowed accurate visualization of co-localisation of CXCR4 expression both on the cell surface and within the cytoplasm of MM cells. IC correlated with flow cytometry-determined CXCR4 expression and allowed the detailed assessment of treatment studies with and without anti-MM agents and AMD3100. Of note, AMD3100 resensitized MM cells to Bor, Vor and Pom (Waldschmidt. Blood 2012:2450), whereas carfilzomib (Cfz) reduced CXCR4 expression in MMCL and could not be antagonized by stroma coculture. Cfz sensitivity was not increased by adding AMD3100 (Simon. Blood 2013:3851). These preclinical studies need additional adaptation to the clinical setting in order to surpass prior drug failure rates, and there is a need to develop more broadly available and better predictive preclinical systems. Therefore, we are currently assessing a 3D co-culture MM model composed of agarose matrix interlayers, based on a novel liquid overlay technique. This model has been specifically adapted to MM cell and BM component interactions as described (Udi. BJH 2013; Zlei. Exp Hematol 2007; Schüler. EOBT 2013). MM cells are cultivated in conical microwells of a non-adherent agarose matrix after BMSCs were plated on the bottom of each plate, allowing the diffusion of soluble cytokines but no direct contact between BMSC and MMCL. Therein, we are presently testing novel anti-MM substances in comparison to our standard-coculture system. Conclusion: Targeting microenvironmental mediators, like SDF-1α and CXCR4, is a promising approach to expand the choice of antimyeloma agents and amplify the effects of established antimyeloma drugs, as previously shown by us and others for the combination of AMD3100 and Bor or Pom. However, as our knowledge on MM and its BMM has dramatically increased a great effort has been made in the preclinical testing of promising new anti-MM agents, and more complex high-throughput in vitro models are urgently needed to better predict the potency of these substances in order to reduce dropouts in clinical trials. We hereby provide a novel approach which better reflects the spatial growth of human MM samples in BMSC coculture, and more closely mimics the growth and proliferation of human MM clones in vivo. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1524-1527 ◽  
Author(s):  
Jinsong Hu ◽  
Damian R. Handisides ◽  
Els Van Valckenborgh ◽  
Hendrik De Raeve ◽  
Eline Menu ◽  
...  

Hypoxia is associated with increased metastatic potential and poor prognosis in solid tumors. In this study, we demonstrated in the murine 5T33MM model that multiple myeloma (MM) cells localize in an extensively hypoxic niche compared with the naive bone marrow. Next, we investigated whether hypoxia could be used as a treatment target for MM by evaluating the effects of a new hypoxia-activated prodrug TH-302 in vitro and in vivo. In severely hypoxic conditions, TH-302 induces G0/G1 cell-cycle arrest by down-regulating cyclinD1/2/3, CDK4/6, p21cip-1, p27kip-1, and pRb expression, and triggers apoptosis in MM cells by up-regulating the cleaved proapoptotic caspase-3, -8, and -9 and poly ADP-ribose polymerase while having no significant effects under normoxic conditions. In vivo treatment of 5T33MM mice induces apoptosis of the MM cells within the bone marrow microenvironment and decreases paraprotein secretion. Our data support that hypoxia-activated treatment with TH-302 provides a potential new treatment option for MM.


2009 ◽  
Vol 188 (2) ◽  
pp. 98-103 ◽  
Author(s):  
Andrew J. Olaharski ◽  
Hirdesh Uppal ◽  
Matthew Cooper ◽  
Stefan Platz ◽  
Tanja S. Zabka ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4341-4351 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Judith M. Runnels ◽  
Costas Pitsillides ◽  
Anne-Sophie Moreau ◽  
Feda Azab ◽  
...  

Abstract The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3409-3409
Author(s):  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Masood Shammas ◽  
Mariateresa Fulciniti ◽  
Yu-Tzu Tai ◽  
...  

Abstract Interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a critical role in promoting MM cell growth, survival, migration and development of drug resistance. This interaction within the bone marrow milieu is unique and its understanding is important in evaluating effects of novel agents in vitro and in vivo. We here describe a novel murine model that allows us to study the expression changes in vivo in MM cells within the human BM milieu. In this model, the green fluorescent protein (INA-6 GFP+) transduced IL-6-dependent human MM cell line, INA-6, was injected in human bone chip implanted into SCID mice. At different time points the bone chip was retrieved, cells flushed out and GFP+ MM cells were purified by CD138 MACS microbeads. Similar isolation process was used on INA-6 GFP+ cells cultured in vitro and used as control. Total RNA was isolated from these cells and gene expression profile analyzed using the HG-U133 array chip (Affymetrix) and DChip analyzer program. We have identified significant changes in expression of several genes following in vivo interaction between INA-6 and the BM microenvironment. Specifically, we observed up-regulation of genes associated with cytokines (IL-4, IL-8, IGFB 2–5) and chemokines (CCL2, 5, 6, 18, 24, CCR1, 2, 4), implicated in cell-cell signalling. Moreover genes implicated in DNA transcription (V-Fos, V-Jun, V-kit), adhesion (Integrin alpha 2b, 7, cadherin 1 and 11) and cell growth (CDC14, Cyclin G2, ADRA1A) were also up-regulated and genes involved in apoptosis and cell death (p-57, BCL2, TNF1a) were down-regulated. Using the Ingenuity Pathway Analysis the most relevant pathways modulated by the in vivo interaction between MM cells and BMSCs were IL-6, IGF1, TGF-beta and ERK/MAPK-mediated pathways as well as cell-cycle regulation and chemokine signalling. These results are consistent with previously observed in vitro cell signalling studies. Taken together these results highlight the ability of BM microenvironment to modulate the gene expression profile of the MM cells and our ability to in vivo monitor the changes. This model thus provides us with an ability to study in vivo effects of novel agents on expression profile of MM cells in BM milieu, to pre-clinically characterize their activity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5042-5042
Author(s):  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Paola Neri ◽  
Sonia Vallet ◽  
Norihiko Shiraishi ◽  
...  

Abstract The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a crucial role not only in proliferation and survival of MM cells, but also in osteoclastogenesis. In this study, we examined diverse potential of novel p38MAPK inhibitor LSN2322600 (LSN) for MM therapy in vitro and in vivo. The cytotoxic activity of LSN against MM cell lines was modest; however, LSN significantly enhances the cytotoxicity of Bortezomib by down-regulating Bortezomib-induced heat shock protein (HSP) 27 phosphorylation. We next examined the effects of LSN on cytokine secretion in MM cells, bone marrow stromal cells and osteoclast precursor cells. LSN inhibited IL-6 secretion from long-term cultured-bone marrow stromal cells (LT-BMSCs) and bone marrow mononuclear cells (BMMNCs) from MM patients in remission. LSN also inhibited MIP-1 α secretion by fresh tumor cells, BMMNCs and CD14 positive cells. Since these cytokines mediate osteoclastogenesis, we further examined whether LSN could inhibit osteoclastogenesis. Importantly, LSN inhibited in vitro osteoclastogenesis induced by macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of nuclear factor- κ B ligand (sRANKL), as well as osteoclastogenesis in the severe combined immunodeficiency (SCID)-Hu mouse model of human MM. These results suggest that LSN represents a promising novel targeted strategy to reduce skeletal complications as well as to sensitize or overcome resistance to Bortezomib.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1674-1674 ◽  
Author(s):  
Nicholas Burwick ◽  
Anne-Sophie Moreau ◽  
Xiaoying Jia ◽  
Xavier Leleu ◽  
Judith Runnels ◽  
...  

Abstract BACKGROUND: Multiple myeloma (MM) is a plasma cell malignancy that depends on interactions with the bone marrow (BM) microenvironment for growth and survival. In turn, adhesion of MM cells to the BM stroma provides a mechanism of resistance from standard chemotherapeutic agents. Recently, our lab has shown that by disrupting this adhesion using a selective CXCR4 inhibitor named AMD3100, MM cells are more sensitive to the proteasome inhibitor Bortezomib (Ghobrial lab, unpublished data). CXCR4 has been a particularly attractive target because its ligand SDF-1 is known to induce p42/44 MAPK, AKT, and the down-stream anti-apoptotic protein bad in MM cells, leading to increased MM growth and survival. Until recently, CXCR4 was thought to be a canonical receptor for the SDF-1 ligand. However, a second chemokine receptor for SDF-1 was subsequently discovered and named CXCR7. CXCR7 is a novel chemokine receptor that is important in cell adhesion, growth and survival in several tumor types. However, the role of CXCR7 in multiple myeloma (MM) has yet to be explored. Furthermore, the ability of SDF-1 ligand to regulate MM function via CXCR7 has not been studied. METHODS: The MM cell lines (U266, MM1.S, RPMI, OPM2, OPM1) were used. After informed consent was obtained, primary bone marrow samples from MM patients were collected. CD138 positive mononuclear cells were isolated by microbead selection. The expression of CXCR7 on MM cell lines and patient samples was confirmed using flow cytometry and RT-PCR analysis. For functional in vitro and ex-vivo assays, the CXCR7 selective antagonist 733 was used (ChemoCentryx Inc., Mountain View, CA). RESULTS: Here we show that CXCR7 was expressed on all tested MM cell lines and primary patient samples as demonstrated by flow cytometry and RT-PCR. Furthermore, CXCR7 was found to regulate SDF-1 induced MM cell adhesion, as demonstrated by in vitro assays using a small molecule compound specific for CXCR7 (733). The CXCR7 antagonist showed significant inhibition of adhesion of MM cell lines and patient samples to fibronectin, endothelial cells and stromal cells, with 50% reduction of adhesion at 5nM of the CXCR7 inhibitor, and with similar activity compared to 20uM of AMD3100 (CXCR4 inhibitor). However, unlike CXCR4, CXCR7 did not effect trans-well migration to SDF-1 chemokine. Interestingly, both receptors were found to be important for trans-endothelial migration of MM cells. Moreover, pre-treatment with 733 reduced homing of MM cells to the BM niche in vivo. Previous studies have failed to show signaling in response to CXCR7 in many tumor types. Here, we demonstrate that treatment with 733 inhibited SDF-1 induced pERK and pAKT, ribosomal pS6Kinase, pGSK3, pSTAT3, pFAK and pPAK signaling pathways, confirming a role for CXCR7 in facilitating SDF-1 signaling. This effect was further confirmed using immunofluorescence. To investigate whether CXCR7 and CXCR4 interact directly, we examined the effect of 733 and AMD3100 on CXCR4 expression and found that AMD3100 significantly inhibited CXCR4 expression, while 733 had no effect on CXCR4 expression, even in the presence of SDF-1. The CXCR7 inhibitor had no effect on the survival of MM cells using MTT and flow cytometry analysis, while high doses of 733 (1uM) had modest inhibition of proliferation. Interestingly, 733 prevented the growth advantage induced by 30nM SDF-1 at 24 hrs. CONCLUSION: Together, these results demonstrate the importance of CXCR7 in regulating MM adhesion and homing, and highlight the differential effects of CXCR4 and CXCR7 in regulating SDF-1 signaling in MM, thus providing a rationale for targeting the SDF-1/CXCR7 axis in MM.


Blood ◽  
2009 ◽  
Vol 113 (26) ◽  
pp. 6669-6680 ◽  
Author(s):  
Aldo M. Roccaro ◽  
Antonio Sacco ◽  
Brian Thompson ◽  
Xavier Leleu ◽  
Abdel Kareem Azab ◽  
...  

Abstract Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138+ MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-κB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM.


Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2615-2622 ◽  
Author(s):  
Laurence Catley ◽  
Ellen Weisberg ◽  
Yu-Tzu Tai ◽  
Peter Atadja ◽  
Stacy Remiszewski ◽  
...  

Abstract Histone deacetylase (HDAC) inhibitors are emerging as a promising new treatment strategy in hematologic malignancies. Here we show that NVP-LAQ824, a novel hydroxamic acid derivative, induces apoptosis at physiologically achievable concentrations (median inhibitory concentration [IC50] of 100 nM at 24 hours) in multiple myeloma (MM) cell lines resistant to conventional therapies. MM.1S myeloma cell proliferation was also inhibited when cocultured with bone marrow stromal cells, demonstrating ability to overcome the stimulatory effects of the bone marrow microenvironment. Importantly, NVP-LAQ824 also inhibited patient MM cell growth in a dose- and time-dependent manner. NVP-LAQ824-induced apoptotic signaling includes up-regulation of p21, caspase cascade activation, and poly (adenosine diphosphate [ADP]) ribose (PARP) cleavage. Apoptosis was confirmed with cell cycle analysis and annexin-propidium iodide staining. Interestingly, treatment of MM cells with NVPLAQ824 also led to proteasome inhibition, as determined by reduced proteasome chymotrypsin-like activity and increased levels of cellular polyubiquitin conjugates. Finally, a study using NVP-LAQ824 in a preclinical murine myeloma model provides in vivo relevance to our in vitro studies. Taken together, these findings provide the framework for NVP-LAQ824 as a novel therapeutic in MM. (Blood. 2003;102:2615-2622)


Sign in / Sign up

Export Citation Format

Share Document