scholarly journals Running-in and micropitting behaviour of steel surfaces under mixed lubrication conditions

2016 ◽  
Vol 101 ◽  
pp. 59-68 ◽  
Author(s):  
A. Clarke ◽  
I.J.J. Weeks ◽  
R.W. Snidle ◽  
H.P. Evans
Lubricants ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 42 ◽  
Author(s):  
Aleks Vrček ◽  
Tobias Hultqvist ◽  
Yannick Baubet ◽  
Marcus Björling ◽  
Pär Marklund ◽  
...  

Under certain operating conditions, rolling contacts have been shown to experience some challenges when lubricated with engine oils containing zinc dialkyldithophosphate (ZDDP) anti-wear additive. In order to better understand the main damage mechanisms during various operating conditions, further studies are needed. This article studies micro-pitting and wear damages of bearing steel surfaces under mixed lubrication conditions in a ball-on-disc setup, lubricated with different engine oils. Based on the results, micro-pitting and wear damage is shown to be highly case-dependent. In general, PAO-based engine oil tends to eliminate micro-pitting damage compared to mineral-based engine oil at less severe lubricating conditions. Moreover, a critical lambda was found for both oils, where the highest micro-pitting damage was observed.


2019 ◽  
Vol 138 ◽  
pp. 239-249 ◽  
Author(s):  
Aleks Vrček ◽  
Tobias Hultqvist ◽  
Yannick Baubet ◽  
Pär Marklund ◽  
Roland Larsson

Friction ◽  
2021 ◽  
Author(s):  
Zongzheng Wang ◽  
Wei Pu ◽  
Xin Pei ◽  
Wei Cao

AbstractExisting studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions. However, most lubricated transmission components operate in the mixed lubrication region, indicating that both the asperity contact and film lubrication exist on the rubbing surfaces. Herein, a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact. Based on this method, the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically. The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz (dry) contact. In addition, the roughness significantly changes the contact stiffness and damping, indicating the importance of film lubrication and asperity contact. The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point, and both of them are affected by the applied torque and rotational speed. In addition, the middle contact path is recommended because of its comprehensive high stiffness and damping, which maintained the stability of spiral bevel gear transmission.


2016 ◽  
Vol 68 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose – The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance. Design/methodology/approach – The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface. Findings – The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions. Originality/value – This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.


Author(s):  
S. Hutt ◽  
A. Clarke ◽  
R. Pullin ◽  
H. P. Evans

Gears typically operate in mixed lubrication conditions, where the lubricant film is too thin to prevent opposing surface asperities from interacting with each other. The likelihood/intensity of interactions is indicated by the Λ ratio: the ratio of smooth surface film thickness to surface roughness. Researchers have asserted that asperity interactions are the predominant cause of acoustic emission (AE) in healthy gear contacts. However, direct experiments on gears have yet to yield a clear relationship between the Asperity AE (AAE) and Λ ratio, this is in part due to the complexity of gear tooth contacts. In this paper, a disc rig was used to simulate a simplified gear contact so that the fundamental relationship between AAE and Λ could be investigated more effectively. By varying oil temperature and entrainment speed, a wide spectrum of lubrication conditions was generated. In contrast to other published studies, an independent measurement technique, the contact voltage (CV), was used to verify the amount of interactions, and repeated roughness measurements were used to confirm minimal surface wear. A simple, consistent and precise relationship between AAE amplitude and Λ was identified and defined for changes from full-film to mixed lubrication. Within the mixed lubrication regime, the AAE amplitude increased exponentially as Λ decreased at all speeds tested. It was also observed that an increase in speed always resulted in an increase in AAE amplitude, independently of any changes in Λ . This direct effect of speed was modelled so that the AAE could be predicted for any combination of speed and Λ within the tested envelope. This paper links gear contact tribology and AE with new precision and clearly demonstrates the potential of using AAE as a sensitive monitoring technique for the lubrication condition of gears.


1972 ◽  
Vol 186 (1) ◽  
pp. 421-430 ◽  
Author(s):  
H. Christensen

The phenomena observed when a lubricated contact or bearing is operating under mixed lubrication conditions are assumed to arise from an interaction of the surface asperities or roughness as well as from hydro-dynamic action of the sliding surfaces. It is shown how one of the previously published stochastic models of hydrodynamic lubrication can be extended or generalized to deal with mixed lubricating conditions. As an illustration of the application of the theory to a concrete example the influence on the operating characteristics of a plane pad, no side-leakage bearing is analysed. It is found that in the mixed lubrication regime friction is mainly controlled by the boundary lubrication properties of the liquid–solid interface. Load, on the other hand, is almost entirely controlled by the hydro-dynamic properties of the bearing. It is demonstrated how transition to mixed lubrication conditions will cause a rapid rise in friction thereby producing a minimum point in the Stribeck type diagram.


2019 ◽  
Vol 799 ◽  
pp. 59-64
Author(s):  
Igor Velkavrh ◽  
Stefan Klien ◽  
Joel Voyer ◽  
Florian Ausserer ◽  
Alexander Diem

In the present study, static coefficients of friction of pure and friction modified (FM) polyamide 6 (PA6) polymers against primer-coated steel surfaces were investigated under a series of nominal contact pressures and by considering the influences of water absorption by the polymer, temperature, counter-body surface roughness and lubrication conditions. Under the majority of the test conditions investigated, FM PA6 exhibited lower static friction than pure PA6. Under unlubricated conditions, this was due to the low adhesion of the FM PA6 provided by its friction modifying inclusions; while under lubricated conditions, a combination of softening due to water absorption and decreased adhesion provided by its friction modifiers enabled lower static friction, especially at medium and high contact pressures.


Sign in / Sign up

Export Citation Format

Share Document