The effect of contact area on velocity weakening of the friction coefficient and friction instability: A case study on brake friction materials

2019 ◽  
Vol 135 ◽  
pp. 38-45 ◽  
Author(s):  
Jin Woo Kim ◽  
Byung Soo Joo ◽  
Ho Jang
Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


Friction ◽  
2020 ◽  
Author(s):  
Rongxin Chen ◽  
Jiaxin Ye ◽  
Wei Zhang ◽  
Jiang Wei ◽  
Yan Zhang ◽  
...  

Abstract The tribological characteristics of cotton fibers play an important role in engineering and materials science, and real contact behavior is a significant aspect in the friction behavior of cotton fibers. In this study, the tribological characteristics of cotton fibers and their relationship with the real contact behavior are investigated through reciprocating linear tribotesting and real contact analysis. Results show that the friction coefficient decreases with a general increase in load or velocity, and the load and velocity exhibit a co-influence on the friction coefficient. The dynamic change in the real contact area is recorded clearly during the experiments and corresponds to the fluctuations observed in the friction coefficient. Moreover, the friction coefficient is positively correlated with the real contact area based on a quantitative analysis of the evolution of friction behavior and the real contact area at different loads and velocities. This correlation is evident at low velocities and medium load.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1155 ◽  
Author(s):  
Junyuan Huang ◽  
Songbo Wei ◽  
Lixin Zhang ◽  
Yingying Yang ◽  
Song Yang ◽  
...  

The superhydrophobic surface can change the friction property of the material, reduce the adhesion of the friction interface, and produce a certain slip, thereby reducing the friction coefficient. The laser has high energy, high density, and is especially suitable for the surface treatment of materials. The laser surface texturing is a good way to construct superhydrophobic surfaces. The experiment uses a nanosecond pulse laser to construct the groove texture on the nickel surface. The contact area between the air and the droplets retained on the rough surface is increased, effectively preventing the water droplets from entering the gully of the surface microstructure, reducing the water droplets and the solid surface. The contact area ultimately makes the surface exhibit excellent superhydrophobicity. A superhydrophobic nickel surface having an apparent contact angle of water (ACAW) of 160° and a sliding angle (SA) of less than 10° was prepared. The MM-W1B vertical universal friction and wear tester was used to test the groove texture samples with different depths. The surface texture can capture the wear debris generated by the wear and store the lubricant, which is beneficial to the formation of fluid dynamic pressure lubrication and improve the load. The friction coefficient is reduced from 0.65 of the unprocessed surfaces to 0.25 after the texturing, and the friction performance is greatly improved.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
M. K. Abdul Hamid ◽  
G. W. Stachowiak

The effects of external hard particles on the friction coefficients and its oscillation amplitudes during hard braking were investigated. Silica sands of the size between 180 to 355 μm were used during the experiments. The results were compared to the results obtained without the grit particles present in order to determine the change in friction coefficient and the fluctuation of frictional oscillation amplitude. Different sliding speeds were applied and external hard particle of different size is found to significantly affect the friction coefficient and standard deviation of friction oscillation amplitude values. The friction coefficients increase with hard particle due to the rapid changes of the effective contact area and the abrasion mode. Some embedded particles operating in two body abrasion mode help to increase the disc surface roughness and influence the stopping time of the disc. The standard deviation values of friction oscillation amplitude however were stable due to more wear debris produced and get compacted to form friction films assisting friction and they tend to reduce at medium speeds because many contact plateaus and effective contact area started to stabilize.


Author(s):  
John Eric Goff ◽  
Luke Boswell ◽  
Daniel Ura ◽  
Mark Kozy ◽  
Matt J Carré

Dimples have been used in the design of some modern tennis shoe outsoles to enhance sliding ability on hard courts. Experiments were performed with bespoke rubber samples possessing various numbers of holes, which served to simulate dimples in tennis shoe treads. The aim of the research was to assess the effect of contact area on sliding friction. As the ratio of holes to solid rubber increased, a critical ratio was reached whereby the static friction coefficient decreased by more than 11% for tread-to-court pressures comparable to real tennis play. Although this study analyzed bespoke rubber samples and not actual tennis shoe treads, shoe manufacturers should be interested in the existence of a critical dimple ratio that could aid them in the creation of tennis shoes suited for sliding on hard courts.


2011 ◽  
Vol 399-401 ◽  
pp. 474-477
Author(s):  
Yun Hai Ma ◽  
Su Qiu Jia ◽  
Bao Gang Wang ◽  
Wei Ye ◽  
Jin Tong ◽  
...  

Jute fibers reinforced friction materials were prepared by mold and heat treatment. The friction coefficients of 3wt.%,9wt.% and 12wt.% jute fibers reinforced friction materials were bigger than that of the materials without jute fibers in the heating condition. The friction coefficient of 6 wt.% jute fibers reinforced friction materials was bigger than that of the materials without jute fibers below 250°C. The friction coefficient of jute fibers reinforced friction materials deceased with the temperature decrease in the cooling condition. The friction coefficient of the materials with free-jute fibers raised from 350-250°C and reduced at the temperature lower than 250°C.Wear rates of the friction materials raised with temperature rise for jute fibers carbonization led to the matrix became loose. With jute fibers content rise worn surface of the reinforced materials became from smooth to rough. There were pits, grooves, abrasive particles, pulled out fibers and wear debris on the worn surfaces. Abrasive wear was the main wear mechanism.


2013 ◽  
Vol 486 ◽  
pp. 379-386 ◽  
Author(s):  
Juraj Gerlici ◽  
Tomáš Lack

Reduction of noise due to rolling contact of wheel and rail for fright cars is one of the principal tasks of the European railways to be solved. Experts of railways, industries and universities were engaged during the last about ten years to search for technical solutions. An important noise reduction of fright cars can be achieved by replacing the cast iron brake shoes by composite brake shoes. Doing that, two directions have been taken into consideration. This is due to the fact, that at that time most composite brake shoes were based on friction coefficients were far away from that ones of the cast iron brake shoes. Applying such friction materials on existing vehicles would have as a consequence the change of braking forces acting on the wheels. These types of brake shoes (K-block) show a friction coefficient which is higher than that one of cast iron. As a consequence the application of the silent composite brake blocks of type K affords the adaptation of the braking system of the vehicle, what is cost intensive. For these reason, the application of K-brake block was proposed for new built vehicles. For existing vehicles solutions having the same friction coefficient as the cast iron brake shoes were requested (LL-Brake doing in this way, the modification of the braking equipment of existing fright cars could be avoided.


Sign in / Sign up

Export Citation Format

Share Document