Tribofilm growth at sliding interfaces of PEEK composites and steel at low velocities

2020 ◽  
Vol 151 ◽  
pp. 106456 ◽  
Author(s):  
Lihe Guo ◽  
Xianqiang Pei ◽  
Fuyan Zhao ◽  
Ligang Zhang ◽  
Guitao Li ◽  
...  
Keyword(s):  
Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H.-C. Su

In order to systematically investigate the mechanical characteristic of a multiple friction pendulum system with more than two concave sliding interfaces and one articulated slider located between these concave sliding interfaces, on the basis of the plasticity theory, a plasticity model called the multiple yield and bounding surfaces model is proposed in addition to analytical formulations derived from the proposed concept of subsystems in this study. The proposed model has two separate groups of multiple yield and bounding surfaces. The first group is adopted to describe the mechanical behavior of the subsystem including the concave sliding interfaces above the articulated slider and the second group is used for modeling the sliding characteristic of the subsystem representing the concave sliding interfaces below the articulated slider. The connection of these two subsystems in series forms the mechanical characteristic of the entire MFPS isolation system. By virtue of the proposed model, the phenomena of the sliding motions of the MFPS isolator with multiple concave sliding interfaces under cyclical loadings can be clearly understood. Analytical results infer that the natural frequency and damping effect of the MFPS isolator with multiple concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


2002 ◽  
Vol 65 (3) ◽  
Author(s):  
A. Martin ◽  
J. Clain ◽  
A. Buguin ◽  
F. Brochard-Wyart

Author(s):  
M. Mansouri ◽  
M. M. Khonsari

A model is developed to predict the behavior of two sliding bodies undergoing oscillatory motion. A set of four dimensionless groups is introduced to characterize the transient dimensionless surface temperature rise. They are: the Peclet number Pe, the Biot number Bi, the amplitude of oscillation A, and the Hertzian semi-contact width α. Also considered in the analysis is the effect of the ratio β = A/α of the amplitude to the semi-contact width. The results of a series of simulations, covering a range of these independent parameters, are presented and examples are provided to illuminated the utility of the model.


2020 ◽  
Vol 199 ◽  
pp. 108209
Author(s):  
Xiu Jia ◽  
Tomas Grejtak ◽  
Brandon Krick ◽  
Natasha Vermaak

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
Yung-Chang Lin

In this paper, a base isolator called a multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. To understand the mechanical behavior of the Multiple DO-FPS isolator under multidirectional excitations, an analytical model called the multiple yield and bounding surfaces model is proposed. On the basis of the derived mathematical formulations for simulation of the characteristics of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect of the Multiple DO-FPS isolator are a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multidirectional excitations can be understood in a simple manner. The analytical results indicate that the natural frequency and damping effect of the Multiple DO-FPS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Y. Bazilevs ◽  
A. Korobenko ◽  
X. Deng ◽  
J. Yan ◽  
M. Kinzel ◽  
...  

Full-scale, 3D, time-dependent aerodynamics and fluid–structure interaction (FSI) simulations of a Darrieus-type vertical-axis wind turbine (VAWT) are presented. A structural model of the Windspire VAWT (Windspire energy, http://www.windspireenergy.com/) is developed, which makes use of the recently proposed rotation-free Kirchhoff–Love shell and beam/cable formulations. A moving-domain finite-element-based ALE-VMS (arbitrary Lagrangian–Eulerian-variational-multiscale) formulation is employed for the aerodynamics in combination with the sliding-interface formulation to handle the VAWT mechanical components in relative motion. The sliding-interface formulation is augmented to handle nonstationary cylindrical sliding interfaces, which are needed for the FSI modeling of VAWTs. The computational results presented show good agreement with the field-test data. Additionally, several scenarios are considered to investigate the transient VAWT response and the issues related to self-starting.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H. C. Su

In order to prevent a building from earthquake damage, a base isolation system called the multiple friction pendulum system (MFPS) which has numerous concave sliding interfaces is proposed to isolate a building from its foundation. Mathematical formulations have been derived to simulate the characteristic of the MFPS isolation system subjected to multi-directional excitations. By virtue of the derived mathematical formulations, the phenomena of the sliding motions of the MFPS isolator with several concave sliding interfaces under multi-directional earthquakes can be clearly understood. Also, numerical analyses of a building isolated with the MFPS isolator with several sliding interfaces have been conducted in this study to evaluate the efficiency of the proposed system in seismic mitigation. It has been proved through numerical analyses that structural responses have been reduced significantly and that the proposed system is a good tool to insure the safety of structures during earthquakes.


Sign in / Sign up

Export Citation Format

Share Document