Investigation on the robust adsorption mechanism of alkyl-functional boric acid nanoparticles as high performance green lubricant additives

2021 ◽  
Vol 157 ◽  
pp. 106909
Author(s):  
Hongxing Wu ◽  
Shaochong Yin ◽  
Liping Wang ◽  
Yin Du ◽  
Yong Yang ◽  
...  
Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 434
Author(s):  
Pascaline Bahati ◽  
Xuejun Zeng ◽  
Ferdinand Uzizerimana ◽  
Ariunsaikhan Tsoggerel ◽  
Muhammad Awais ◽  
...  

In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.


Carbon ◽  
2019 ◽  
Vol 154 ◽  
pp. 301-312 ◽  
Author(s):  
Zihao Mou ◽  
Baogang Wang ◽  
Hongsheng Lu ◽  
Shanshan Dai ◽  
Zhiyu Huang

2018 ◽  
Vol 6 (17) ◽  
pp. 8078-8100 ◽  
Author(s):  
Nayan Ranjan Singha ◽  
Mrinmoy Karmakar ◽  
Manas Mahapatra ◽  
Himarati Mondal ◽  
Arnab Dutta ◽  
...  

Unorthodox synthesis of natural polymer-g-terpolymer superadsorbent for exclusion of M(ii/iii).


2007 ◽  
Vol 29-30 ◽  
pp. 199-202 ◽  
Author(s):  
S. Mondal ◽  
A.K. Banthia

Polycondensations (condensation polymerization) are stepwise reactions between bifunctional or polyfunctional compoents, with elimination of simple molecules such as water or alcohol and the formation of macromolecular substances. Polyborate ester , formed by this process, gives ceramic materials during pyrolysis. Polymer pyrolysis offers an attractive alternative to the typical high temperature powder processing approach in the fabrication of high-performance ceramics. This approach might also prove to be useful in the fabrication of fibers, coatings, and composites. It is within this framework that the present study was undertaken; its aim is the preparation of boron-containing oligomeric precursors which gives boron nitride after pyrolysis. The precursor was synthesized by the condensation reaction between boric acid and urea (or other N-containing reactive multifunctional compounds). The oligomeric precursor and its pyrolysed products were thoroughly characterized by elemental analysis, IR, NMR, XRD, Thermal Analysis and Transmission Electron Microscopy(TEM). The elemental analysis results of the oligomer are---- C-13.40%, H-5.97%, N-32.44% and B-17.09%. X-ray diffraction and TEM studies showed that boron nitride obtained from this system possess tetragonal structure.


2021 ◽  
Author(s):  
Hong Guo ◽  
Patricia Iglesias Victoria

Taking into account the environmental awareness and ever-growing restrictive regulations over contamination, the study of new lubricants or lubricant additives with high performance and low toxicity over the traditional lubes to reduce the negative impact on the environment is needed. In this chapter, the current literature on the use of ionic liquids, particularly protic ionic liquids, as high-performance lubricants and lubricant additives to different types of base lubricants are reviewed and described. The relation between ionic liquids structures and their physicochemical properties, such as viscosity, thermal stability, corrosion behavior, biodegradability, and toxicity, is elaborated. Friction reduction and wear protection mechanisms of the ionic liquids are discussed with relation to their molecular structures and physicochemical properties.


2019 ◽  
Vol 7 (3) ◽  
pp. 1801164 ◽  
Author(s):  
Muchu Tan ◽  
Weihua Zhang ◽  
Changling Fan ◽  
Lingfang Li ◽  
Han Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document