The qualitative risk assessment of MINI, MIDI and MAXI horizontal directional drilling projects

2014 ◽  
Vol 44 ◽  
pp. 148-156 ◽  
Author(s):  
Maria Gierczak
Author(s):  
Jaime Aristizabal ◽  
Daniel Moncada

Abstract At the end of 2018, a large-scale landslide was identified near the Right of Way of one of the pipelines operated by Cenit Transporte y Logística de Hidrocarburos. In this zone it was possible to identify a populated area and a river. At the beginning the depth of the Landslide did not represent a hazard to the pipeline due to the Horizontal Directional Drilling technique applied when the pipeline was built. A monitoring program was developed through inclinometers and piezometers and In-Line Inspections were carried out to identify any disturbance in the alignment of the pipeline. From the monitoring program and In-Line Inspection data it was possible to confirm interaction between the landslide and the pipeline. A perpendicular force to the pipeline alignment produces a bending strain at two points, and landslide interact with the pipeline along a length of 170 m. The depth of the landslide failure surface was in between 17 to 22 m, and the pipeline was about 15 m deep. Due to this interaction, it was necessary to develop a risk assessment to identify a safe limit displacement. For a while, this allowed us to design both a temporal innovative solution considering a flexible pipeline and a definitive solution to build the new segment of the pipeline which was deeper than the last one, through the Horizontal Directional Drilling technique.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 289
Author(s):  
Maria Krechowicz ◽  
Adam Krechowicz

Nowadays we can observe a growing demand for installations of new gas pipelines in Europe. A large number of them are installed using trenchless Horizontal Directional Drilling (HDD) technology. The aim of this work was to develop and compare new machine learning models dedicated for risk assessment in HDD projects. The data from 133 HDD projects from eight countries of the world were gathered, profiled, and preprocessed. Three machine learning models, logistic regression, random forests, and Artificial Neural Network (ANN), were developed to predict the overall HDD project outcome (failure free installation or installation likely to fail), and the occurrence of identified unwanted events. The best performance in terms of recall and accuracy was achieved for the developed ANN model, which proved to be efficient, fast and robust in predicting risks in HDD projects. Machine learning applications in the proposed models enabled eliminating the involvement of a group of experts in the risk assessment process and therefore significantly lower the costs associated with the risk assessment process. Future research may be oriented towards developing a comprehensive risk management system, which will enable dynamic risk assessment taking into account various combinations of risk mitigation actions.


GIS Business ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. 43-53
Author(s):  
Eugenia Schmitt

The need to focus on banks funding structure and stress testing in an explicit way arose as a consequence of the crisis of past decades. Liquidity risks usually occur as a consequence of other kinds of risks, hence analysing scenarios in a prospective manner is essential for the assessment if the bank can fulfill its obligations as they come due and if its funding costs are appropriate. The structural liquidity risk and the degree of the liquidity mismatch can be measured based on the liquidity gap analysis, where expected cash-in- and outflows, divided in different time-buckets are depicted. The liquidity gap report (LGR) shows if a liquidity shortcoming appears in the future and how high is the amount a bank would have to pay, if any hedging were not possible. This paper shows how to build a comprehensive LGR which is the base for both, liquidity and wealth risk evaluation. To improve the accuracy of the forecast, the counterbalancing capacity will be incorporated into the LGR. This tool is a methodological basis for quantitative and qualitative risk assessment and stress testing.


2015 ◽  
pp. 91-96
Author(s):  
I. E. Kiryanov ◽  
Yu. D. Zemenkov ◽  
S. M. Dorofeev ◽  
V. S. Toropov

On the basis of analyzing the characteristics of used materials and the parameters of trenchless transitions profiles was developed emergency response, including several schemes of release a pipe jammed in the hole during the pipeline pulling in the pipeline construction by horizontal directional drilling. Proposed schemes applicability analyzed for trenchless construction real conditions.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


Work ◽  
2021 ◽  
pp. 1-11
Author(s):  
Carlos Carvalhais ◽  
Micaela Querido ◽  
Cristiana C. Pereira ◽  
Joana Santos

BACKGROUND: The COVID-19 global pandemic brought several challenges to occupational safety and health practice. One of these is the need to (re)assess the occupational risks, particularly, biological risks. OBJECTIVE: The purpose of this work is to promote guidance to occupational safety and health practitioners when conducting a biological risk assessment in this context. METHODS: The main steps of the biological risk assessment are explained with some inputs regarding the novelty posed by SARS-CoV-2 and an example of a qualitative risk assessment method is presented. Also, its application to two different activities was exemplified. RESULTS: In both cases, the assessment considered that vulnerable workers were working from home or in medical leave. The results showed low or medium risk level for the assessed tasks. For medium risk level, additional controls are advised, such maintain social distancing, sanitize instruments/equipment before use, use proper and well-maintained PPE (when applicable), and promote awareness sessions to spread good practices at work. Employers must be aware of their obligations regarding biological risk assessment and OSH practitioners must be prepared to screen and link the abundance of scientific evidence generated following the outbreak, with the technical practice. CONCLUSIONS: This paper could be an important contribution to OSH practice since it highlights the need to (re)assess occupational risks, especially biological risk, to ensure a safe return to work, providing technical guidance.


2021 ◽  
Vol 9 (6) ◽  
pp. 565
Author(s):  
Yunja Yoo ◽  
Han-Seon Park

The International Maritime Organization (IMO) published the Guidelines on Maritime Cyber Risk Management in 2017 to strengthen cybersecurity in consideration of digitalized ships. As part of these guidelines, the IMO recommends that each flag state should integrate and manage matters regarding cyber risk in the ship safety management system (SMS) according to the International Safety Management Code (ISM Code) before the first annual verification that takes place on or after 1 January 2021. The purpose of this paper is to identify cybersecurity risk components in the maritime sector that should be managed by the SMS in 2021 and to derive priorities for vulnerability improvement plans through itemized risk assessment. To this end, qualitative risk assessment (RA) was carried out for administrative, technical, and physical security risk components based on industry and international standards, which were additionally presented in the IMO guidelines. Based on the risk matrix from the RA analysis results, a survey on improving cybersecurity vulnerabilities in the maritime sector was conducted, and the analytic hierarchy process was used to analyze the results and derive improvement plan priority measures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hailin Zhang ◽  
João Antonangelo ◽  
Chad Penn

AbstractPortable X-ray fluorescence (pXRF) spectrometer allows fast in-situ elemental determination without wet digestion for soils or geological materials, but the use of XRF on wet materials is not well documented. Our objective was to develop a rapid field method using pXRF to measure metals in the residues from horizontal directional drilling (HDD) operations so that proper disposal decisions can be made in-situ. To establish the procedure, we spiked soil samples with 4 concentrations of Cr, Ni, Cu, Zn, As, Cd, and Pb up to 1000 mg kg−1, and then the metal concentrations were determined by wet chemical method after drying and acid digestion (standard method), and by pXRF, also at laboratory conditions, after drying and at two different moisture conditions. The measurements by pXRF and standard method after drying and after removal of excess water (AREW) were highly correlated with slopes ranging from 0.83 ± 0.01 to 1.08 ± 0.01 (P < 0.001) for all metals. The relationship was better AREW than the saturated paste without removal of excess water and the moisture content affected only the accuracy of As, Cd, and Pb. The procedure established was successfully used for HDD residues collected from 26 states of US with moisture content ranging from 14 to 83% AREW. The pXRF was proven to be a reliable tool for fast detection of common metals in dried soils and HDD residues, and samples containing < 30% moisture content without needing to correct for moisture. If the moisture is > 30%, excess water in samples need to be removed with a commercially available filter press to achieve high accuracy. The developed procedures reduce time of metal detection from days to about an hour which allows drilling operators to make quick decisions on soil or HDD disposal.


Sign in / Sign up

Export Citation Format

Share Document