A robust numerical method for modeling ventilation through long tunnels in high temperature regions based on 1D pipe model

2021 ◽  
Vol 115 ◽  
pp. 104050
Author(s):  
Zhihong Zhao ◽  
Haoran Xu ◽  
Guihong Liu ◽  
Feng Liu ◽  
Guiling Wang
2013 ◽  
Vol 838-841 ◽  
pp. 458-461
Author(s):  
Jing Cui ◽  
Ling Feng Yin ◽  
Xiao Ming Guo ◽  
Gan Tang ◽  
Tian Jiao Jin

Based on the fire tests of WILLIAMS double-poles structure, considering the dual nonlinear interaction of material and geometric, established one complete finite element model of grid structure. For the performance that the physical and mechanics properties of steel will degrade while the temperature arising, simulate the test models with ANSYS, get a better numerical results, proof the numerical method is feasible.


2014 ◽  
Vol 6 ◽  
pp. 614189 ◽  
Author(s):  
Qingchun Yang ◽  
Juntao Chang ◽  
Wen Bao

Experimental and numerical study of Richtmyer-Meshkov instability (RMI) induced mixing enhancement has been conducted in a liquid-fueled scramjet engine with a central strut. To generate the RMI in the scramjet engine, transverse high temperature jets are employed downstream the strut injector. Compared to the transverse ordinary temperature jet, the jet penetration into the supersonic airstream of high temperature jet increases by 60%. The numerical results indicate that the RMI phenomenon markedly enhances the mixing efficiency (up to 43%), which is necessary to initiate the chemical reactions. Ground experiments were carried out in the combustor, which verify the numerical method from the perspective of wall pressures of the combustor. In particular, the experiment results indicate that the RMI can benefit flame-holding due to the mixing enhancement.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
J. H. Jia ◽  
X. Y. Hu ◽  
Z. L. An ◽  
F. Z. Xuan ◽  
S. T. Tu

In this paper, a sensing device specifically for measuring deformations of high temperature pipes is designed, and its applicability is verified both experimentally and theoretically. First, the design procedure and the working principle of the sensing device are described in detail. Then, experiments are carried out to prove the accuracy and the long-term stability of the sensing device. To verify the accuracy of the device, numerical simulation of the deformation of a pipe model is carried out using finite element method. Results from the experimental measurements are in good agreement with results from the numerical simulation. The long-term stability of the device is validated by monitoring the deformation. Conclusions are drawn that the designed sensing device has high accuracy and excellent stability and can be used for measuring deformations of high temperature pipes in power plants.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Sign in / Sign up

Export Citation Format

Share Document