Residual ultimate strength assessment of stiffened panels with locked cracks

2014 ◽  
Vol 85 ◽  
pp. 398-410 ◽  
Author(s):  
Ming Cai Xu ◽  
Y. Garbatov ◽  
C. Guedes Soares
2005 ◽  
Author(s):  
Haihong Sun ◽  
Xiaozhi Wang

Floating production, storage and offloading systems (FPSOs) have been widely used for the development of offshore oil and gas fields because of their attractive features. They are mostly ship- shaped, either converted from existing tankers or purposely built, and the hull structural scantling design for tankers may be applicable to FPSOs. However, FPSOs have their unique characteristics. FPSOs are sited at specific locations with a dynamic loading that is quite different from those arising from unrestricted service conditions. The structures are to be assessed to satisfy the requirements of all in-service and pre-service loading conditions. The fundamental aspects in the structural assessment of FPSOs are the buckling and ultimate strength behaviors of the plate panels, stiffened panels and hull girders. The focus of this paper is to address the buckling and ultimate strength criteria for FPSO structures. Various aspects of the criteria have been widely investigated, and the results of the design formulae proposed in this paper have been compared to a very extensive test database and numerical results from nonlinear finite element analysis and other available methods. The procedures presented in this paper are based on the outcomes of a series of classification society projects in the development of buckling and ultimate strength criteria and referred to the corresponding classification society publications.


Author(s):  
Shengming Zhang

This paper presents buckling and ultimate strength assessment methods for ship structures. Buckling and collapsing analysis approaches for plates, stiffened panels and hull girders are described and their development history and employments in ship design assessments are reviewed and discussed. Examples using non-linear finite (FE) element analysis are given and comparisons between results obtained by formulae and FE analysis are carried out. Lloyd’s Register’s recent research and development work on ultimate strength and its applications to existing oil tankers and bulk carriers are also presented.


Author(s):  
Xiaozhi Wang ◽  
Haihong Sun ◽  
Xiaohong Wang ◽  
Zhinong Wang ◽  
Anil Thayamballi

Strength of offshore structures including FPSOs consists broadly of three aspects which are global intact and damaged strength, and local strength. Any of these strength aspects can be assessed by either prescriptive rule or finite element analysis (FEA). While many considerations relate to behavior in the linear elastic regime, the buckling and ultimate strength of both structural components (plate and stiffened panels) and structural systems can involve material and geometric nonlinearity behavior beyond the elastic region. With the development of computers and robust methods for nonlinear FEA, there has been a tremendous increase in the number of studies of structures under plastic or elasto-plastic behavior. However, even with today’s computers and software, nonlinear FEA of offshore structures remains complex and is not routinely applied in design analysis. Considerable effort therefore continues to be devoted to the development of simplified methods for rapid structural assessment and design analysis, instead of lengthy and complex nonlinear FEA. In this paper, various bucking and ultimate strength methodologies for plate and stiffener panels are first introduced. Each method is then compared with collected test data for buckling and ultimate strength of plate panels and stiffeners. Finally, conclusions are summarized based on the comparison study.


2021 ◽  
Vol 9 (10) ◽  
pp. 1079
Author(s):  
Mesut Tekgoz ◽  
Yordan Garbatov

Ship structures are subjected to complex sea loading conditions, leading to a sophisticated structural design to withstand and avoid structural failure. Structural capacity assessment, particularly of the longitudinal strength, is crucial to ensure the safety of ships, crews, the marine environment, and the cargoes carried. This work aims to overview the ultimate strength assessment of intact ship structures in recent decades. Particular attention is paid to the ultimate strength of plates, stiffened panels, box girders, and entire ship hull structures. A discussion about numerical and experimental analyses is also provided. Finally, some conclusions and suggestions about potential future work are noted.


Author(s):  
M. Tekgoz ◽  
Y. Garbatov ◽  
C. Guedes Soares

AbstractThe objective of this work is to provide an overview of the ultimate strength assessment of ageing and damaged ship structures in the last decades. Particular attention is paid to the ultimate strength of plates, stiffened panels, box girders, and entire ship hull structures subjected to corrosion degradation, fatigue cracking, and mechanical damage caused by accidental loading or impact. A discussion on the effect of the cyclic load on the plate rigidity, re-yielding, and ultimate load capacity on the ship hull girder is also part of the present study. Finally, some conclusions and discussions about potential future work are provided, identifying that more studies about the impact of corrosion degradation on the structural behaviour of the stiffened panels and the overall hull girders are needed. Studies related to the dynamic collapse behaviour of corroded and damaged ship structures under time-variant load also requires additional attention.


2012 ◽  
Vol 154 (A2) ◽  

This study aims at studying different configurations of the stiffened panels in order to identify robust configurations that would not be much sensitive to the imprecision in boundary conditions that can exist in experimental set ups. A numerical study is conducted to analyze the influence of the stiffener’s geometry and boundary conditions on the ultimate strength of stiffened panels under uniaxial compression. The stiffened panels with different combinations of mechanical material properties and geometric configurations are considered. The four types of stiffened panels analysed are made of mild or high tensile steel and have bar, ‘L’ and ‘U’ stiffeners. To understand the effect of finite element modelling on the ultimate strength of the stiffened panels, four types of FE models are investigated in FE analysis including 3 bays, 1/2+1+1/2 bays, 1+1 bays and 1 bay with different boundary conditions.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.


Sign in / Sign up

Export Citation Format

Share Document