Energy absorption behaviour of different grades of steel sheets using a strain rate dependent constitutive model

2017 ◽  
Vol 111 ◽  
pp. 9-18 ◽  
Author(s):  
Pundan K. Singh ◽  
Anindya Das ◽  
S. Sivaprasad ◽  
Pinaki Biswas ◽  
Rahul K. Verma ◽  
...  
2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


2015 ◽  
Vol 121 ◽  
pp. 37-45 ◽  
Author(s):  
Mahmood M. Shokrieh ◽  
Reza Mosalmani ◽  
Majid Jamal Omidi

2011 ◽  
Vol 82 (9) ◽  
pp. 1087-1093 ◽  
Author(s):  
L. Krüger ◽  
S. Wolf ◽  
S. Martin ◽  
U. Martin ◽  
A. Jahn ◽  
...  

Author(s):  
Chi-Seung Lee ◽  
Myung-Sung Kim ◽  
Kwang-Ho Choi ◽  
Myung-Hyun Kim ◽  
Jae-Myung Lee

In the present study, the material characteristics of a glass fiber-reinforced polyurethane foam (RPUF) which is widely adopted to a liquefied natural gas (LNG) insulation system was investigated by a series of compressive tests under room and cryogenic temperatures. In addition, a temperature- and strain rate-dependent constitutive model was proposed to describe the material nonlinear behavior such as increase of yield stress and plateau according to temperature and strain rate variations. The elasto-viscoplastic model was transformed to an implicit form, and was implemented into the ABAQUS user-defined subroutine, namely, UMAT. Through a number of simulation using the developed subroutine, the various stress-strain relationships of RPUF were numerically predicted, and the material parameters associated with the constitutive model were identified. In order to validate the proposed method, the computational results were compared to a series of test of RPUF.


2016 ◽  
Vol 858 ◽  
pp. 151-156
Author(s):  
Hong Yu Zhou ◽  
Cong Kun Yang ◽  
Jun Chang Ci ◽  
Yi Bo Chen

Combined with the research of dynamic mechanical properties of concrete under earthquake action by lots of scholars home and abroad, research status of rate-dependent test within the scope of the Earthquake strain rate (10-4/s~10-1/s) on common concrete materials is reviewed, including the dynamic uniaxial compressive properties, dynamic uniaxial tensile properties, as well as multi-axis dynamic performance. The influence of the Earthquake strain rate on concrete strength, energy absorption capability and deformation capacity such as the elastic modulus, Poisson's ratio, peak strain, and ultimate strain are discussed intensively. Results show that the tensile strength, compressive strength and energy absorption capability of concrete increase with the increase of strain rate, while the results of the various parameters of the deformation ability are not consistent, the reason is that different test results caused by different test conditions. In this paper, the reference for the further study on rate-dependent of concrete in the future is provided.


2011 ◽  
Vol 117-119 ◽  
pp. 434-437
Author(s):  
Wen Jun Hu ◽  
Xi Cheng Huang ◽  
Fang Ju Zhang ◽  
Cheng Jun Chen

Uni-axial quasi-static tests at strain rates 10-5, 10-4, 10-3,10-2 and 10-1 s-1 and dynamic compressive tests at strain rates 1679, 2769,5000 and 8200 s-1 have been carried out to study the mechanical behavior for polycarbonate used in the avigation industry. The stress–strain curves of polycarbonate in the strain-rate range from 10-5 to 8200 s-1 have been obtained. The effects of the strain rate on yield phenomenon and rate-dependent mechanical behavior are discussed. A plastic flow law based on the DSGZ rate-temperature-dependent constitutive model was used to describe the mechanical behavior of polycarbonate in the strain-rate range from 10-5 to 103 s-1. The results at the six strain rates are in excellent agreement with the experimental data, which illustrates that the constitutive model can describe the mechanical behavior for polycarbonate at low and high strain rates perfectly.


Sign in / Sign up

Export Citation Format

Share Document