Rate Correlation Research Situation of Ordinary Concrete about Strain-Rate within the Scope of the Earthquake

2016 ◽  
Vol 858 ◽  
pp. 151-156
Author(s):  
Hong Yu Zhou ◽  
Cong Kun Yang ◽  
Jun Chang Ci ◽  
Yi Bo Chen

Combined with the research of dynamic mechanical properties of concrete under earthquake action by lots of scholars home and abroad, research status of rate-dependent test within the scope of the Earthquake strain rate (10-4/s~10-1/s) on common concrete materials is reviewed, including the dynamic uniaxial compressive properties, dynamic uniaxial tensile properties, as well as multi-axis dynamic performance. The influence of the Earthquake strain rate on concrete strength, energy absorption capability and deformation capacity such as the elastic modulus, Poisson's ratio, peak strain, and ultimate strain are discussed intensively. Results show that the tensile strength, compressive strength and energy absorption capability of concrete increase with the increase of strain rate, while the results of the various parameters of the deformation ability are not consistent, the reason is that different test results caused by different test conditions. In this paper, the reference for the further study on rate-dependent of concrete in the future is provided.

2017 ◽  
Vol 111 ◽  
pp. 9-18 ◽  
Author(s):  
Pundan K. Singh ◽  
Anindya Das ◽  
S. Sivaprasad ◽  
Pinaki Biswas ◽  
Rahul K. Verma ◽  
...  

2020 ◽  
Vol 991 ◽  
pp. 62-69
Author(s):  
Sallehan Ismail ◽  
Mohamad Asri Abd Hamid ◽  
Zaiton Yaacob

This study aims to investigate the dynamic behavior of recycled mortar under impact loading using a split Hopkinson pressure bar (SHPB). Several mortar mixtures were produced by adding various fine recycled aggregates (FRA) to the mixture in replacement percentages of 0%, 25%, 50%, 75%, and 100% of the natural fine aggregate (NFA). The effects of strain rate on compressive strength and specific energy absorption were obtained. Results show that the dynamic compressive strength and specific energy absorption of recycled mortar are highly strain rate dependent; specifically, they increase nearly linearly with the increase in peak strain rate. However, the compressive strength and specific energy absorption of recycled mortar are generally lower than those of NFA mortar (reference samples) under similar high strain rates. The findings of this research can help researchers and construction practitioners to ascertain the appropriate mix design procedure to optimize the impact strength properties of recycled mortar for protective structural application.


Author(s):  
Shi Liu ◽  
Jinyu Xu

AbstractIn order to study the dynamic compression mechanical properties of engineering rock under high strain rate (100~102 S−1)loads, dynamic compression tests of three common engineering rocks (marble, sandstone and granite) taken from the Qinling Mountain are studied subjected to five different kinds of shock air pressure using Φ 100 mm split Hopkinson pressure bar test system improved with purple copper waveform shaper. The dynamic compression stress-strain curves, dynamic compressive strength, peak strain, energy absorption rate and elastic modulus of three rocks variation with strain rate are researched. The dynamic compression failure modes under different strain rates are analyzed. Then the three-dimensional numerical simulations of waveform shaper shaping effects and stress wave propagation in the SHPB tests are carried out to reproduce the test results. The research results show that the dynamic compression stress-strain curves show certain discreteness, and there is an obvious rebound phenomenon after the peak. With the increase in strain rate, the dynamic compressive strength, peak strain and energy absorption rate are all in a certain degree of increase, but the elastic modulus have no obvious change trend. Under the same strain rate, the dynamic compressive strength of granite is greatest while of sandstone is least. With the increase in strain rate, the margin of increase in peak strain and energy absorption rate of granite is greatest while of sandstone is least. The failure modes of the sample experience a developing process from outside to inside with the increase of strain rate.


2011 ◽  
Vol 94-96 ◽  
pp. 220-224 ◽  
Author(s):  
Xi Guang Cui ◽  
Hai Dong Xu

Considering the strain rate then puts forward the modified uniaxial dynamic constitutive model related to strain rate in concrete-filled square steel tube and the modified calculation results match well with the experimental results. Based on the above conclusion, uniaxial compression performance finite element analysis with different strain rate among 10-5/s–10-3/s is completed, the results showed that strain rate can obviously change the dynamic performance of the concrete-filled square steel tube. Through the analysis of the influencing factors of the core concrete compressive strength, it is showed that with the increasing of the strain rate and the improving of concrete strength, the ultimate bearing capacity of concrete-filled square steel tube is higher and the ductility is reduced. With the increasing of stirrup ratio, ultimate bearing capacity is greater and the ductility is enhanced. With the sectional dimensions increasing, the ultimate bearing capacity is greater and the ductility is enhanced.


2014 ◽  
Vol 638-640 ◽  
pp. 1391-1396
Author(s):  
Hong Yu Zhou ◽  
Yi Bo Chen ◽  
Ya Ran Zhang ◽  
Hai Qian Wang

Introducing research progress of rate-dependent tests by domestic and foreign scholars, strain-rate effect on dynamic mechanical properties of concrete are reviewed. Classified descriptions of research results on dynamic load tests of concrete at home and abroad are provided, including uniaxial compression tests, uniaxial tensile tests, and multi-axis tests; strain-rate effects on concrete strength and deformation properties in each test are respectively discussed; and strain-rate effect on concrete energy absorption capability are described.


2011 ◽  
Vol 82 (9) ◽  
pp. 1087-1093 ◽  
Author(s):  
L. Krüger ◽  
S. Wolf ◽  
S. Martin ◽  
U. Martin ◽  
A. Jahn ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Xuguang Li ◽  
Jie Liu ◽  
Yanjie Feng

Shale gas is the most important new energy source in the field of energy, and its exploitation is very important. The research on the dynamic mechanical properties of shale is the premise of exploitation. To study the dynamic mechanical properties of shale from the Changning-Weiyuan area of Sichuan Province, China, under confining pressure, we used a split Hopkinson pressure bar (SHPB) test system with an active containment device to carry out dynamic compression tests on shale with different bedding angles. (1) With active confining pressure, the shale experiences a high strain rate, and its stress-strain curve exhibits obvious plastic deformation. (2) For the same impact pressure, the peak stress of shale describes a U-shaped curve with an increasing bedding angle; besides, the peak stress of shale with different bedding angles increases linearly with rising confining pressure. The strain rate shows a significant confining pressure enhancement effect. With active confining pressure, the peak strain gradually decreases as the bedding angle increases. (3) As a result of the influence of different bedding angles, the dynamic elastic modulus of shale has obvious anisotropic characteristics. Shale with different bedding angles exhibits different rates of increase in the dynamic elastic modulus with rising confining pressure, which may be related to differences in the development of planes of weakness in the shale. The results of this study improve our understanding of the behavior of bedded shale under stress.


2012 ◽  
Vol 591-593 ◽  
pp. 949-954
Author(s):  
Jun Jie Xiao ◽  
Dong Sheng Li ◽  
Xiao Qiang Li ◽  
Chao Hai Jin ◽  
Chao Zhang

Uniaxial tensile tests were performed on a Ti-6Al-4V alloy sheet over the temperature range of 923K-1023K with the strain rates of 5×10-4s-1-5×10-2s-1 up to a 25% length elongation of the specimen. The true stress-strain curves reveal that the flow stress decreases with the increase of the temperature and the decrease of the strain rate. In the same process, the accompanying softening role increases. It is found that the Ti-6Al-4V shows the features of non-linearity, temperature sensitivity and strain rate dependence in hot environment. Finally, an Arrhenius-type law has been established to predict the experimental data and the prediction precision was verified by the plotting of parameter and flow stress, which revealed that the error of stress exponent was only 4.99%. This indicates the flow stress model has high precision and can be used for the process design and the finite element simulation of hot forming thin-wall Ti-6Al-4V alloy components.


2013 ◽  
Vol 690-693 ◽  
pp. 2686-2689
Author(s):  
Ying Mei Li ◽  
Tian Yu Zhao ◽  
Jun Liu ◽  
Bao Zong Huang

Aiming at Pbfree solder Sn4.0Ag0.5Cu (in short, SAC405), the uniaxial tensile tests are accomplished with constant strain-rate under different temperature and strain-rate load conditions. The elastic-viscoplastic behaviors of SAC405 solders are studied. The rate-dependent material main properties are analyzed, such ad yield limit, tensile strength, saturation stress, etc. Partitioned constitutive model is accepted to describe the constitutive behavior of SAC405 solder. The seven parameters in partitioned model are determined by experiment data. The results of numerical simulation are fitted with the experimental values.


Sign in / Sign up

Export Citation Format

Share Document