Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone

Ultrasonics ◽  
2015 ◽  
Vol 60 ◽  
pp. 33-40 ◽  
Author(s):  
Emilia Vasanelli ◽  
Donato Colangiuli ◽  
Angela Calia ◽  
Maria Sileo ◽  
Maria Antonietta Aiello
2021 ◽  
Vol 12 (2) ◽  
pp. 39
Author(s):  
Tuba Bahtli ◽  
Nesibe Sevde Ozbay

Studies in the literature show that the physical and mechanical properties of concrete could be improved by the incorporation of different kinds of industrial waste, including waste tire rubber and tire steel. Recycling of waste is important for economic gain and to curb environmental problems. In this study, finely ground CuAl10Ni bronze is used to improve the physical and mechanical properties, and freeze-thaw resistances of C30 concrete. The density, cold crushing strength, 3-point bending strength, elastic modulus, toughness, and freeze-thaw resistances of concrete are determined. In addition, the Schmidt Rebound Hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, are applied. SEM/EDX analyses are also carried out. It is noted that a more compacted structure of concrete is achieved with the addition of bronze sawdust. Then higher density and strength values are obtained for concretes that are produced by bronze addition. In addition, concretes including bronze sawdust generally show higher toughness due to high plastic energy capacities than pure concrete.


2019 ◽  
Vol 11 (0) ◽  
pp. 1-5
Author(s):  
Deividas Augutis ◽  
Džigita Nagrockienė

Materials used for the study: Portland cement CEM I 42,5 R, 0/4 fraction sand, 4/16 fraction gravel, biofuel fly ash, superplastizer ViscoCrete D187 (V) and water. Seven compositions of concrete were designed by replacing 0%, 5%, 10%, 15%, 20%, 25% and 30% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. Studies have shown that the increase of biofuel fly ash content up to 15% increases concrete density and compressive strengh after 28 days of curing, compressive strength, ultrasonic pulse velocity, closed porosity, concrete forecasted freeze-thaw cycles and decreases water absorbtion, open porosity.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Ruhal Pervez Memon ◽  
Lemar Achekzai ◽  
Abdul Rahman Mohd. Sam ◽  
A. S. M. Abdul Awal ◽  
Uroosa Memon

The aim of this study was to shows the behavior of sawdust concrete at elevated temperature. Sawdust is considered as waste material but nowadays this waste material is utilized in the construction of the building as sawdust concrete. Sawdust is a by-product of wood which is generally used in the production of lightweight concrete, possessing low thermal conductivity. In this study sawdust concrete was made at three different proportions of cement and sawdust 1:1, 1:2, 1:3 by volume. At these proportions, the physical and mechanical properties such as density, workability, strength, fire resistance, mass loss, ultrasonic pulse velocity and residual strength were investigated after 28 days of curing. It was found that with the increment in the amount of sawdust, the workability and strength decreases, however in terms of fire resistance, concrete with lower amount of sawdust performed well. Considering the overall physical and mechanical properties, sawdust concrete can be used in building construction. 


2021 ◽  
Vol 5 (6) ◽  
pp. 146
Author(s):  
Mahmoud Abu-Saleem ◽  
Yan Zhuge ◽  
Reza Hassanli ◽  
Mark Ellis ◽  
Md Mizanur Rahman ◽  
...  

Different types of recycled plastic have been used in concrete and most studies have focused on the behaviour of a single type of plastic. However, separating plastic wastes increases the cost and time of processing. To tackle this problem, this research presents an experimental investigation to determine the effect of incorporating different combinations of three types of recycled plastic waste aggregates—Polyethylene terephthalate (PET), High Density Polyethylene (HDPE) and Polypropylene (PP)—at different replacement ratios of coarse aggregate on physical and mechanical properties of concrete. The combinations include two plastic types at 10% and 20% replacement ratios and three plastic types at 15% and 30% replacement ratios. The performance of the plastic concrete was assessed based on various physical and mechanical properties including workability, fresh and dry densities, air content, compressive, indirect tensile and flexural strengths, modulus of elasticity, stress-strain behaviour and ultrasonic pulse velocity. It is found that the workability of Mixed Recycled Plastic Concrete (MRPC) at a low replacement rate is independent of the type of plastic. The minimum reduction in the compressive strength, indirect tensile and modulus of elasticity were achieved by R3 (PET + PP) at 10% replacement, while R5 (HDPE + PP) at 10% replacement achieved the highest flexural strength and ultrasonic pulse velocity values. The findings suggest that the mixed recycled plastics have a good possibility to partially replace coarse aggregates in concrete which will benefit the plastics recycling community and environment. Furthermore, the study will provide guidance to the concrete industry concerning the effect of the implementation of unsorted mixed types of plastic as coarse aggregates in the production of concrete.


2017 ◽  
Vol 5 (2) ◽  
pp. 109 ◽  
Author(s):  
Metin Aşcı ◽  
İsmail Kaplanvural ◽  
Ahmet Karakaş ◽  
Özgün Kamil Şahin ◽  
Cengiz Kurtuluş

Correlation of physical and mechanical properties with ultrasonic pulse velocities (UPV) of sandstones in Çenedağ, Kocaeli-Turkey, NW was performed in this study. Physical and mechanical properties were defined and the relationships among the uniaxial compressive strength (UCS), porosity, void ratio, point load strength index Is(50),Schmidt hardness (RN) and bulk mass density by weight with ultrasonic pulse velocity of pink and cream colored sandstone unit of Lower Ordovician Çenedağ formation were investigated. In the scope of this research, 16 sandstone specimens were collected from various locations of Çenedağ formation in Çenedağ-Kocaeli, Turkey and laboratory experiments were implemented. Later, the statistical correlations were performed by regression analysis to evaluate the relationships between these properties and ultrasonic pulse velocity. Reasonably good correlations were determined between the UPV and physical and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5983
Author(s):  
Donatas Sikarskas ◽  
Valentin Antonovič ◽  
Jurgita Malaiškienė ◽  
Renata Boris ◽  
Rimvydas Stonys ◽  
...  

This study addresses the application of polyvinyl alcohol (PVA) fibers to improve the performance of lightweight cement composites with pozzolans. Blended cement mixes based on expanded glass granules were modified with PVA fibers (Type A: Ø40 µm, L = 8 mm and Type B: Ø200 µm, L = 12 mm). The following research methods were used to analyse the effect of the fibers on the structure of cement matrix and physical-mechanical properties of lightweight composite: SEM, XRD, DTG, calorimetry tests, and standard test methods of physical and mechanical properties. Results from the tests showed that a denser layer of hydrates was formed around the PVA fiber and the amounts of portlandite, CSH, and CASH formed in the specimens with PVA were found to be higher. PVA fibers of Type A accelerated hydration of the cement paste, slightly increased the compressive strength of the lightweight composite, but had no significant effect on the values of density, ultrasonic pulse velocity and flexural strength. The shrinkage of cement composite was significantly reduced using both types of PVA fiber and both types of PVA fibers increased the fracture energy of lightweight cement composite with expanded granules.


2018 ◽  
Vol 789 ◽  
pp. 150-154
Author(s):  
Victor Hugo Blancas-Herrera ◽  
Jorge Alberto Pacheco-Segovia ◽  
Wilfrido Martínez-Molina ◽  
Hugo Luis Chávez García ◽  
Mauricio Arreola-Sanchez ◽  
...  

The use of dehydrated fibres of cactus, Opuntia ficus-indica (FN), and starch (corn starch,Zea Mays (MZ)) as partial substitutes for the total mass of Portland Cement (CP) in the making ofmortar, aims at modifying its physical and mechanical properties, reducing the amount of cementand the CO2 emission. Four mixtures of CP mortar were designed incorporating a superplasticizeradditive with a water/cement weight ratio of 0.68. To compare the results, there was a controlmortar; two mixtures with partial substitutions using fibres of FN, 0.5 and 1.5% (in weight of CP)respectively; and a substituted mixture with 2% of corn starch plus 0.5% of cactus fibre (MZ - FN).The test age was 180 days. The specimens were subjected to an accelerated attack of sodiumsulphate, quantifying the electric resistivity (ER) and the ultrasonic pulse velocity (UPV). Theresults indicate that the substitution of the materials, remarkably densify the cement matrix, whichresults in the improvement of the physical properties and the durability.


Sign in / Sign up

Export Citation Format

Share Document