Vaxfectin® enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses

Vaccine ◽  
2010 ◽  
Vol 28 (17) ◽  
pp. 3055-3065 ◽  
Author(s):  
Martha Sedegah ◽  
William O. Rogers ◽  
Maria Belmonte ◽  
Arnel Belmonte ◽  
Glenna Banania ◽  
...  
2012 ◽  
Vol 86 (8) ◽  
pp. 4082-4090 ◽  
Author(s):  
Maria L. Knudsen ◽  
Alice Mbewe-Mvula ◽  
Maximillian Rosario ◽  
Daniel X. Johansson ◽  
Maria Kakoulidou ◽  
...  

1998 ◽  
Vol 64 (2-3) ◽  
pp. 125-132 ◽  
Author(s):  
M Merle Elloso ◽  
Marianne Wallace ◽  
D.D Manning ◽  
William P Weidanz

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 14570-14570
Author(s):  
D. G. McNeel ◽  
E. J. Dunphy ◽  
L. E. Johnson ◽  
T. P. Frye ◽  
M. J. Staab ◽  
...  

14570 Background: Prostatic acid phosphatase (PAP) is a tumor antigen in prostate cancer. Clinical trials conducted in patients with metastatic prostate cancer targeting PAP by means of antigen presenting-cell vaccines have suggested clinical benefit in terms of disease progression and overall survival. Ultimately, tumor vaccines may be most effective in the setting of minimal residual disease. We have been investigating plasmid DNA vaccines encoding PAP in rodent models. We found these to be safe and effective in eliciting PAP-specific CD8 T cells and saw evidence of anti-tumor efficacy. We report here the initial immunological results from a dose-escalation portion of a phase I trial testing a DNA vaccine encoding PAP in patients with minimal residual stage D0 prostate cancer. Methods: Patients with clinical stage D0 prostate cancer with rising PSA were vaccinated over a 12-week period, 6 times at 14-day intervals, with a plasmid DNA vaccine encoding PAP (pTVG-HP). Vaccinations were administered intradermally with 100 mcg, 500 mcg, or 1500 mcg doses, and with 200 mcg of GM-CSF co-administered as a vaccine adjuvant. Immunological responses were evaluated by antigen-specific T cell proliferation and IFNγ secretion, and by ELISA for PAP-specific IgG. Results: At present 9 patients have been enrolled in a dose-escalation portion of the trial, and 6 have completed all immunizations. No serious adverse events have been observed, and no patients have discontinued treatment. To date, immunological analysis has been performed for the first, lowest dose cohort. PAP-specific CD4 and CD8 T cell responses, measured by antigen-specific T cell proliferation, were elicited following immunization in 2 of 3 patients. PAP-specific IgG antibodies were not detectable in these patients following vaccination. Conclusions: Intradermal immunization of patients with stage D0 prostate cancer with pTVG-HP has been without evidence of adverse events in doses up to 500 mcg. CD4 and CD8 T cell responses have been observed, consistent with a predominantly cellular immune response, at even the lowest dose of vaccine. Immunological analysis will be performed for patients completing the other dose levels, and all patients will be followed for changes in serum PSA levels. No significant financial relationships to disclose.


Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 507 ◽  
Author(s):  
Christopher A. Gonelli ◽  
Georges Khoury ◽  
Rob J. Center ◽  
Damian F.J. Purcell

A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Louise Bjerkan ◽  
Ganesh Ram R. Visweswaran ◽  
Arnar Gudjonsson ◽  
Geneviève M. Labbé ◽  
Doris Quinkert ◽  
...  

Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named “Vaccibody”, has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Sign in / Sign up

Export Citation Format

Share Document