In vitro stimulation of human influenza-specific CD8+ T cells by dendritic cells pulsed with an influenza virus-like particle (VLP) vaccine

Vaccine ◽  
2010 ◽  
Vol 28 (34) ◽  
pp. 5524-5532 ◽  
Author(s):  
Haifeng Song ◽  
Vaughan Wittman ◽  
Anthony Byers ◽  
Tenekua Tapia ◽  
Bin Zhou ◽  
...  
2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Jing Liu ◽  
Guilian Yang ◽  
Haibin Huang ◽  
Chunwei Shi ◽  
Xing Gao ◽  
...  

ABSTRACT Influenza A virus (H1N1) is an acute, highly contagious respiratory virus. The use of lactic acid bacteria (LAB) to deliver mucosal vaccines against influenza virus infection is a research hot spot. In this study, two recombinant Lactobacillus plantarum strains expressing hemagglutinin (HA) alone or coexpressing aCD11c-HA to target HA protein to dendritic cells (DCs) by fusion to an anti-CD11c single-chain antibody (aCD11c) were constructed. The activation of bone marrow dendritic cells (BMDCs) by recombinant strains and the interaction of activated BMDCs and sorted CD4+ or CD8+ T cells were evaluated through flow cytometry in vitro, and cellular supernatants were assessed by using an enzyme-linked immunosorbent assay kit. The results demonstrated that, compared to the HA strain, the aCD11c-HA strain significantly increased the activation of BMDCs and increased the production of CD4+ gamma interferon-positive (IFN-γ+) T cells, CD8+ IFN-γ+ T cells, and IFN-γ in the cell culture supernatant in vitro. Consistent with these results, the aCD11c-HA strain clearly increased the activation and maturation of DCs, the HA-specific responses of CD4+ IFN-γ+ T cells, CD8+ IFN-γ+ T cells, and CD8+ CD107a+ T cells, and the proliferation of T cells in the spleen, finally increasing the levels of specific antibodies and neutralizing antibodies in mice. In addition, the protection of immunized mice was observed after viral infection, as evidenced by improved weight loss, survival, and lung pathology. The adoptive transfer of CD8+ T cells from the aCD11c-HA mice to NOD/Lt-SCID mice resulted in a certain level of protection after influenza virus infection, highlighting the efficacy of the aCD11c targeting strategy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4079-4079
Author(s):  
Lei Bao ◽  
Mindy M Stamer ◽  
Kimberly Dunham ◽  
Deepa Kolaseri Krishnadas ◽  
Kenneth G Lucas

Abstract Abstract 4079 Poster Board III-1014 MAGE A1 and MAGE A3 are cancer testis antigens that are expressed on a number of malignant tumor cells, but not by normal cells, except for male germ cells which lack HLA expression. Therefore, MAGE cytotoxic T lymphocytes are strictly tumor-specific. Adoptive transfer of antigen specific cytotoxic T lymphocytes (CTL) provides immediate graft-versus tumor effects while minimizing risk for graft-versus-host disease. The aim of the current study was to find ideal conditions for expansion of CTL targeting tumor-associated antigens from peripheral blood mononuclear cells (PBMCs) of healthy donors to be used in allogenic cell therapy. In this study we investigated the ability to generate MAGE A1 and MAGE A3 specific cytotoxic T cells using autologous dendritic cells (DC) loaded with MAGE A1 and MAGE A3 overlapping peptides. CTL lines specific for MAGE A1 and MAGE A3 were established by stimulating CD8 T cells from healthy donors with autologous dendritic cells loaded with MAGE A1 or MAGE A3 overlapping pooled peptides in round-bottomed, 96-well plates. CD8+ T cells were restimulated with the same ratio of peptide pulsed DC on days 7 and 14 in the presence of IL-2 (50 U/ml), IL-7 and IL-15 (5 ng/ml). These microcultures were screened 10 days after the third stimulation for their capacity to produce interferon-gamma (IFN-gamma) when stimulated with autologous EBV-transformed B lymphocytes (BLCL) transduced with lentivirus(LV) encoding MAGE A1 or MAGE A3 and autologous BLCL transduced with LV encoding GFP. MAGE A1 and MAGE-A3 specific IFN-gamma producing cells were rapidly expanded in OKT3 and IL2. The specificity of the rapidly expanded MAGE A1 and MAGE A3 specific T cells was confirmed by IFN-gamma production as measured by intracellular cytokine staining and ELISA as well as antigen specific cytotoxicity by a standard 51chromium (51Cr) release assay. We successfully generated MAGE A1 and MAGE A3 specific CTL lines from healthy donors using this method. Specific CTL lines showed cytotoxicity in vitro not only to target cells pulsed with MAGE A1 or MAGE A3 peptides but also to target cells transduced with LV-MAGE A1 or LV-MAGE A3. Specific cytolytic activity was accompanied by IFN-gamma secretion. These data indicate that tumor antigen specific CTL can be expanded using overlapping peptides regardless of an individual's HLA specificity. The ability to generate tumor specific CTL from donors of various HLA backgrounds provide a rationale for utilizing MAGE A1 and MAGE A3 overlapping peptides for expansion of antigen specific T cells for adoptive T-cell therapy against MAGE A1 or MAGE A3 expressing tumors. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 164 (6) ◽  
pp. 3402-3412 ◽  
Author(s):  
Gerald P. Linette ◽  
Srinivas Shankara ◽  
Simonne Longerich ◽  
Sixun Yang ◽  
Rhonda Doll ◽  
...  

2015 ◽  
Vol 112 (47) ◽  
pp. 14664-14669 ◽  
Author(s):  
Anand K. Katakam ◽  
Hans Brightbill ◽  
Christian Franci ◽  
Chung Kung ◽  
Victor Nunez ◽  
...  

Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB–inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c+ cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8+ T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8+ DCs in vitro, namely antigen cross-presentation to CD8+ T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4+ T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.


2005 ◽  
Vol 79 (23) ◽  
pp. 14526-14535 ◽  
Author(s):  
Carlos F. Narváez ◽  
Juana Angel ◽  
Manuel A. Franco

ABSTRACT We have previously shown that very few rotavirus (RV)-specific T cells that secrete gamma interferon circulate in recently infected and seropositive adults and children. Here, we have studied the interaction of RV with myeloid immature (IDC) and mature dendritic cells (MDC) in vitro. RV did not induce cell death of IDC or MDC and induced maturation of between 12 and 48% of IDC. Nonetheless, RV did not inhibit the maturation of IDC or change the expression of maturation markers on MDC. After treatment with RV, few IDC expressed the nonstructural viral protein NSP4. In contrast, a discrete productive viral infection was shown in MDC of a subset of volunteers, and between 3 and 46% of these cells expressed NSP4. RV-treated IDC secreted interleukin 6 (IL-6) (but not IL-1β, IL-8, IL-10, IL-12, tumor necrosis factor alpha, or transforming growth factor beta), and MDC released IL-6 and small amounts of IL-10 and IL-12p70. The patterns of cytokines secreted by T cells stimulated by staphylococcal enterotoxin B presented by MDC infected with RV or uninfected were comparable. The frequencies and patterns of cytokines secreted by memory RV-specific T cells evidenced after stimulation of peripheral blood mononuclear cells (PBMC) with RV were similar to those evidenced after stimulation of PBMC with RV-infected MDC. Finally, IDC treated with RV strongly stimulated naive allogeneic CD4+ T cells to secrete Th1 cytokines. Thus, although RV does not seem to be a strong maturing stimulus for DC, it promotes their capacity to prime Th1 cells.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
S Omarsdottir ◽  
M Sigurpalsson ◽  
A Eggertsdottir ◽  
J Runarsson ◽  
I Hardardottir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document