Rheo-optical near-infrared (NIR) spectroscopy study of low-density polyethylene (LDPE) in conjunction with projection two-dimensional (2D) correlation analysis

2014 ◽  
Vol 70 ◽  
pp. 53-57 ◽  
Author(s):  
Hideyuki Shinzawa ◽  
Wataru Kanematsu ◽  
Isao Noda
1993 ◽  
Vol 47 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Charles E. Miller

The ability of near-infrared (NIR) spectroscopy, combined with principal component regression (PCR), to nondestructively determine the blend ratio of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) in extruded films is demonstrated. Results indicate that the NIR spectrum in the region 2100 to 2500 nm can be used to determine the HDPE mass percentage of 60–80- μm-thick film samples to within 2.5%, over a range of 0 to 100%. NIR spectral effects from scattering are important for the determination of the HDPE % for HDPE contents above 50%, and spectral effects from changes in the methyl group concentration and perhaps the PE crystallinity are important for the determination of the HDPE % for HDPE contents below 50%. In addition, a large variation between the spectra of replicate samples, probably caused by variations in the degree or direction of molecular orientation in the samples, was observed.


1998 ◽  
Vol 6 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Yukihiro Ozaki ◽  
Yan Wang

The basic principle and applications of generalised two-dimensional (2D) near infrared (NIR) correlation spectroscopy are reviewed in this paper. A brief history and the basic principle of 2D correlation spectroscopy are described first, and then its importance for NIR spectroscopy is discussed. An outline of the mathematical treatment of generalised 2D correlation spectroscopy is given. Several examples of generalised 2D NIR and 2D NIR-mid IR (MIR) heterospectral correlation analysis are introduced.


2001 ◽  
Vol 41 (supplement) ◽  
pp. S44
Author(s):  
K. Murayama ◽  
T. Negawa ◽  
T. Hayashi ◽  
K. Kuwata ◽  
S. Era ◽  
...  

2019 ◽  
Vol 37 (8) ◽  
pp. 843-850 ◽  
Author(s):  
Bastian Küppers ◽  
Sabine Schloegl ◽  
Gernot Oreski ◽  
Roland Pomberger ◽  
Daniel Vollprecht

In the project ‘NEW-MINE’ the use of sensor-based sorting machinery in the field of ‘landfill mining’ is investigated. Defilements pose a particular challenge in the treatment and sorting of plastics contained in landfills. For this reason, the effects of various pollutants caused by the interactions in the landfill body or the mechanical treatment steps in landfill mining are examined. In the following elaboration, the focus is on the influences of surface moisture and surface roughness of plastics on sensor-based sorting by means of near-infrared technology. Near-infrared radiation (NIR) in a wavelength range of 990 nm to 1500 nm has been used for the detection and classification of plastic particles. The experiments demonstrate that increased surface roughness reduces signal noise and thereby improves the classification of both spectrally similar and transparent plastics, but reduces the yield of low-softening plastics because their sliding speed on a sensor-based chute sorter varies as a result of the heating of the chute. Surface moisture causes the absorption of radiation from 1115 nm (high density polyethylene [HDPE], linear low density polyethylene [LLDPE], polyethylen terephthalate [PET] and polyvinylchloride [PVC]) or from 1230 nm (low density polyethylene [LDPE], polypropylene [PP] and thermoplastic polyurethane [TPU]) up to at least 1680 nm, which causes amplification or attenuation of various extremes in the derivative. However, the influence of surface moisture on the yield of plastics is usually very low and depends on the spectral differences between the different plastics.


2008 ◽  
Vol 62 (10) ◽  
pp. 1129-1136 ◽  
Author(s):  
Liang Li ◽  
Qili Wu ◽  
Shanjun Li ◽  
Peiyi Wu

In this work, the isothermal curing process of diglycidyl ether of bisphenol A(DGEBA) cured with 4,4′-diaminodiphenylmethane (DDM) was monitored in situ by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. With the help of generalized two-dimensional (2D) correlation analysis, the results obtained showed that, during curing, the change of amine and epoxy groups was simultaneous, taking place prior to the change of hydroxyl groups, followed by the change of CH2/CH groups, resulting from the ring-opening reaction of epoxy groups. In addition, 2D MIR×NIR hetero-spectral correlation analysis and second-derivative analysis were also employed, by means of which direct evidence of the curing mechanism could be obtained and obscure NIR band assignments in the overlapped CH combination region could be made.


Polymer ◽  
2019 ◽  
Vol 172 ◽  
pp. 142-151 ◽  
Author(s):  
Tao Li ◽  
Haoyang Sun ◽  
Fan Lei ◽  
Dandan Li ◽  
Jing Leng ◽  
...  

2017 ◽  
Vol 72 (2) ◽  
pp. 288-296 ◽  
Author(s):  
Michał Kwaśniewicz ◽  
Mirosław A. Czarnecki

Effect of the chain length on mid-infrared (MIR) and near-infrared (NIR) spectra of aliphatic 1-alcohols from methanol to 1-decanol was examined in detail. Of particular interest were the spectra-structure correlations in the NIR region and the correlation between MIR and NIR spectra of 1-alcohols. An application of two-dimensional correlation analysis (2D-COS) and chemometric methods provided comprehensive information on spectral changes in the data set. Principal component analysis (PCA) and cluster analysis evidenced that the spectra of methanol, ethanol, and 1-propanol are noticeably different from the spectra of higher 1-alcohols. The similarity between the spectra increases with an increase in the chain length. Hence, the most similar are the spectra of 1-nonanol and 1-decanol. Two-dimensional hetero-correlation analysis is very helpful for identification of the origin of bands and may guide selection of the best spectral ranges for the chemometric analysis. As shown, normalization of the spectra pronounces the intensity changes in various spectral regions and provides information not accessible from the raw data. The spectra of alcohols cannot be represented as a sum of the CH3, CH2, and OH group spectra since the OH group is involved in the hydrogen bonding. As a result, the spectral changes of this group are nonlinear and its spectral profile cannot be properly resolved. Finally, this work provides a lot of evidence that the degree of self-association of 1-alcohols decreases with the increase in chain length because of the growing meaning of the hydrophobic interactions. For butyl alcohol and higher 1-alcohols the hydrophobic interactions are more important than the OH OH interactions. Therefore, methanol, ethanol, and 1-propanol have unlimited miscibility with water, whereas 1-butanol and higher 1-alcohols have limited miscibility with water.


RSC Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 4397-4409 ◽  
Author(s):  
Jing Zhao ◽  
Jihai Zhang ◽  
Tao Zhou ◽  
Xifei Liu ◽  
Qiang Yuan ◽  
...  

FTIR spectroscopy in combination with scaling-MW2D and 2D correlation analysis is used to study the reaction pathways of polyacrylonitrile copolymer fibers pre-oxidation.


Sign in / Sign up

Export Citation Format

Share Document