Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor

2015 ◽  
Vol 73 ◽  
pp. 323-331 ◽  
Author(s):  
M-K.H Winkler ◽  
K.F. Ettwig ◽  
T.P.W. Vannecke ◽  
K. Stultiens ◽  
A. Bogdan ◽  
...  
2004 ◽  
Vol 50 (6) ◽  
pp. 207-215 ◽  
Author(s):  
Y.-H. Ahn ◽  
H.-C. Kim

The sustainable anaerobic nitrogen removal and microbial granulation were investigated by using a laboratory anaerobic granular sludge bed reactor, treating synthetic (inorganic and organic) wastewater and piggery waste. From inorganic synthetic wastewater, lithoautotrophic ammonium oxidation to nitrite/nitrate was observed by an addition of hydroxylamine. Also, the results revealed that the Anammox intermediates (particularly, hydrazine) contents in the substrate would be one of the important parameters for success of the anaerobic nitrogen removal process. The results from organic synthetic wastewater show that if the Anammox organism were not great enough in the startup of the process, denitritation and anaerobic ammonification would be a process prior to the Anammox reaction. The anaerobic ammonium removal from the piggery waste was performed successfully, probably due to the Anammox intermediates contained in the substrate. This reactor shows a complex performance including the Anammox reaction and HAP crystallization, as well as having partial denitritation occurring simultaneously. From the activity test, the maximum specific N conversion rate was 0.1 g NH4-N/g VSS/day (0.77 g T-N/g VSS/day), indicating that potential denitritation is quite high. The NO2-N/NH4-N ratio to Anammox is 1.17. The colour of the biomass treating the piggery waste changed from black to dark red. It was also observed that the red-colored granular sludge had a diameter of 1-2 mm. The settleability assessment of the granular sludge revealed that the granular sludge had a good settleability even though it was worse than that of seed granular sludge.


2015 ◽  
Vol 2015 (16) ◽  
pp. 6320-6323
Author(s):  
C.M Castro-Barros ◽  
L.T Ho ◽  
M.-K. H Winkler ◽  
E.I.P Volcke

2004 ◽  
Vol 49 (5-6) ◽  
pp. 145-153 ◽  
Author(s):  
Y.-H. Ahn ◽  
I.-S. Hwang ◽  
K.-S. Min

The anaerobic ammonium removal from a piggery waste with high strength (56 g COD/L and 5 g T-N/L) was investigated using a lab-scale upflow anaerobic sludge bed reactor at a mesophilic condition. Based on the nitrogen and carbon balance in the process, the contribution of autotrophic and heterotrophic organisms was also evaluated in terms of the influent NO2-N/NH4-N ratio (1:0.8 and 1:1.2 for Phase 1 and Phase 2, respectively). The result of this research demonstrates that the anaerobic ammonium removal from the piggery waste, using the UASB reactor, can be performed successfully. Furthermore, it appears that by using granular sludge as the seed biomass, the ANAMMOX reaction can start more quickly. Average nitrogen conversion was 0.59 kg T-N/m3 reactor-day (0.06 kg T-N/kg VSS/day) and 0.66 kg T-N/m3 reactor-day (0.08 kg T-N/kg VSS/day) for Phase 1 and Phase 2. The NO2-N/NH4-N removal ratio by the ANAMMOX was 1.48 and 1.79 for Phase 1 and Phase 2. The higher nitrite contents (about 50%) in the substrate resulted in higher nitrite nitrogen removal by the partial denitritation, as well as the ANAMMOX reaction, implying higher potential of partial denitritation. However, the result reveals that the ANAMMOX reaction was influenced less by the degree of partial denitritation, and the ANAMMOX bacteria did not compete with denitritation bacteria. The colour of the biomass at the bottom of the reactor changed from dark gray to dark red, which was accompanied by an increase in cytochrome content. At the end of the experiment, red-coloured granular sludge with diameter of 1-2 mm at the lower part of the reactor was also observed.


1994 ◽  
Vol 29 (4) ◽  
pp. 581-598
Author(s):  
C.F. Shew ◽  
N. Kosaric

Abstract Toxicity of sulfite (Na2SO3) and cadmium (CdCl2) ions to anaerobic granular sludge was investigated in 1.2 litre bench-scale upflow anaerobic sludge blanket (UASB) reactors during process acclimation and shock load conditions. Minimal sulfite toxicity was observed under gradual and shock load conditions at sulfite concentrations of up to 1000 mg S/L if proper acclimation was allowed to occur. No long-term toxic effects were observed although the COD digestion rate was temporarily inhibited by shock load of sulfite. Scanning electron micrographs indicated that more sulfate-reducing bacteria were present in the granules developed in the reactors with sulfite supplement although rod-shaped Methanosaeta-like bacteria were still dominant. High bacterial growth rate was observed in the reactors which were supplied with the feed containing sulfite. The COD digestion rate was inhibited at a cadmium loading rate of 2.4 g Cd per day under both acclimation and shock load conditions. Acclimation did not seem to improve the bacteria to tolerate the toxicity of cadmium. The concentration of free cadmium was very low in the reactors under normal conditions, but increased rapidly when the COD digestion in the reactors ceased. The bacteria could not be reactivated after inhibited by cadmium. When reactors were operated at low specific COD loading rates, more inorganic precipitates were formed inside the granules which consequently settled faster.


1987 ◽  
Vol 22 (3) ◽  
pp. 437-443 ◽  
Author(s):  
N. Kosaric ◽  
Z. Duvnjak

Abstract Aerobic sludge from a municipal activated sludge treatment plant, sludge from a conventional municipal anaerobic digester, aerobic sludge from an activated sludge process of a petroleum refinery, and granular sludge from an upflow sludge blanket reactor (USBR) were tested in the deemulsification of a water-in-oil emulsion. All sludges except the last one, showed a good deemulsification capability and could he used for a partial deemulsification of such emulsions. The rate and degree of the deemulsifications increased with an increase in sludge concentrations. The deemulsifications were faster at 85°C and required smaller amounts of sludge than in the case of the deemulsifications at room temperature. An extended stirring (up to a certain limit) in the course of the dispersion of sludge emulsion helped the deemulsification. Too vigorous agitation had an adverse effect. The deemulsification effect of sludge became less visible with an increase in the dilution of emulsion which caused an increase in its spontaneous deemulsification.


1985 ◽  
Vol 17 (1) ◽  
pp. 223-230 ◽  
Author(s):  
P K Latola

A wastewater from an integrated paper mill with a COD of 1200 mg/dm3 was anaerobically treated in a multi-stage reactor. The BOD7 removal efficiencies of 60-75 % were achieved at maximal loading rates of 5-6 kg COD/m3d and HRT of 4-6 hours due to the granular sludge. Industrial sulphite evaporator condensates from Ca- and Na-processes were treated in anaerobic filters containing light gravel, plastic foam and power plant slag as filter media. The BOD7 removals of 78 % on average were achieved at loading rates of 1.8-3.3 kg COD/m3d with Ca-process evaporator condensates and 80 % BOD7 removals were achieved with Na-process condensates at loading rates of 3.5-4.1 kg COD/m3d.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 67-75 ◽  
Author(s):  
Sigrun J. Jahren ◽  
Jukka A. Rintala ◽  
Hallvard Ødegaard

Thermomechanical pulping (TMP) whitewater was treated in thermophilic (55°C) anaerobic laboratory-scale reactors using three different reactor configurations. In all reactors up to 70% COD removals were achieved. The anaerobic hybrid reactor, composed of an upflow anaerobic sludge blanket (UASB) and a filter, gave degradation rates up to 10 kg COD/m3d at loading rates of 15 kg COD/m3d and hydraulic retention time (HRT) of 3.1 hours. The anaerobic multi-stage reactor, consisting of three compartments, each packed with granular sludge and carrier elements, gave degradation rates up to 9 kg COD/m3d at loading rates of 15-16 kg COD/m3d, and HRT down to 2.6 hours. Clogging and short circuiting eventually became a problem in the multi-stage reactor, probably caused by too high packing of the carriers. The anaerobic moving bed biofilm reactor performed similar to the other reactors at loading rates below 1.4 kg COD/m3d, which was the highest loading rate applied. The use of carriers in the anaerobic reactors allowed short HRT with good treatment efficiencies for TMP whitewater.


1999 ◽  
Vol 39 (7) ◽  
pp. 187-194 ◽  
Author(s):  
P. Lens ◽  
F. Vergeldt ◽  
G. Lettinga ◽  
H. Van As

The diffusive properties of mesophilic methanogenic granular sludge have been studied using diffusion analysis by relaxation time separated pulsed field gradient nuclear magnetic resonance (DARTS PFG NMR) spectroscopy. NMR measurements were performed at 22°C with 10 ml granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Spin-spin relaxation (T2) time measurements indicate that three 1H populations can be distinguished in methanogenic granular sludge beds, corresponding to water in three different environments. The T2 relaxation time measurements clearly differentiate the extragranular water (T2 ≈ 1000 ms) from the water present in the granular matrix (T2 = 40-100 ms) and bacterial cell associated water (T2 = 10-15 ms). Self-diffusion coefficient measurements at 22°C of the different 1H-water populations as the tracer show that methanogenic granular sludge does not contain one unique diffusion coefficient. The observed distribution of self-diffusion coefficients varies between 1.1 × 10−9 m2/s (bacterial cell associated water) and 2.1 × 10−9 m2/s (matrix associated water).


Sign in / Sign up

Export Citation Format

Share Document