An innovative method based on cloud model learning to identify high-risk pollution intervals of storm-flow on an urban catchment scale

2019 ◽  
Vol 165 ◽  
pp. 115007 ◽  
Author(s):  
Y.J. Liao ◽  
H.T. Zhao ◽  
Y. Jiang ◽  
Y.K. Ma ◽  
X. Luo ◽  
...  
2009 ◽  
Vol 60 (3) ◽  
pp. 727-735 ◽  
Author(s):  
V. Prigiobbe ◽  
M. Giulianelli

The infiltration of parasitical water into two sewer systems in Rome (Italy) was quantified during a dry weather period. Infiltration was estimated using the hydrograph separation method with two water components and δ18O as a conservative tracer. The two water components were groundwater, the possible source of parasitical water within the sewer, and drinking water discharged into the sewer system. This method was applied at an urban catchment scale in order to test the effective water-tightness of two different sewer networks. The sampling strategy was based on an uncertainty analysis and the errors have been propagated using Monte Carlo random sampling. Our field applications showed that the method can be applied easily and quickly, but the error in the estimated infiltration rate can be up to 20%. The estimated infiltration into the recent sewer in Torraccia is 14% and can be considered negligible given the precision of the method, while the old sewer in Infernetto has an estimated infiltration of 50%.


2011 ◽  
Vol 63 (11) ◽  
pp. 2590-2597 ◽  
Author(s):  
M. C. Gromaire ◽  
P. Robert-Sainte ◽  
A. Bressy ◽  
M. Saad ◽  
B. De Gouvello ◽  
...  

Many studies have shown that roofing materials are an important source of metals in urban runoff. Today, in the context of the European Water Directive (2000/60 CE), the quantification of these emissions is necessary, and thus the development of assessment tools is needed. This study focuses on a small urban catchment (drained by a separative sewer system). Atmospheric fallout, road runoff, roof runoff and total runoff at the outlet of the catchment were sampled. The aim is (1) to verify the contribution of roofing materials to metallic flows of Zn and Pb at the catchment scale and (2) to try to model emissions using some models previously developed at the test-bed scale. These models have to be tested at different spatial scales. Results obtained confirm the strong contribution of roofing materials to Zn and Pb flows at the catchment scale. For Zn, models tested were successfully transposed and validated at the roof and the catchment scales, permitting a good quantification of Zn emissions. For Pb, the use of the models highlights some difficulties, especially concerning the identification and the quantification of lead surface areas implemented.


2014 ◽  
Vol 1073-1076 ◽  
pp. 1630-1633 ◽  
Author(s):  
Marco Carbone ◽  
Michele Turco ◽  
Giuseppe Brunetti ◽  
Patrizia Piro

For many hydrologic analyses, planning or design problems, reliable rainfall estimates are necessary. For this reason, an accurate estimation of storm event properties is central to continuous simulation of rainfall. Rainfall is generally noted as single events or storms where the beginning and the end are defined by rainless of particular size duration called Minimum Inter-event Time (MIT). Starting from a critical study of the state of the art, this paper intends to investigate the definition of MIT for rainfall events shorter than an hour that, on an urban scale, are the most critical for designers, planners and operators of urban drainage system. All event characteristics such as depth and mean rain rate, are influenced by the choice of the value of MIT. This paper reviews the range of approaches used in literature and after this, based on a year of pluviograph records on an urban catchment, proposes a value of MIT according to catchment network entry time.


2015 ◽  
Vol 21 (7) ◽  
pp. 1877-1893 ◽  
Author(s):  
Lianghong Wu ◽  
Cili Zuo ◽  
Hongqiang Zhang ◽  
Zhaohua Liu

2020 ◽  
Vol 10 (12) ◽  
pp. 4117
Author(s):  
Domenico Guida ◽  
Albina Cuomo ◽  
Antonia Longobardi ◽  
Paolo Villani

In this paper, we studied the geo-hydrological structure and behavior of a reference catchment, located in the Cilento UNESCO Global Geopark, southern Italy, representative of the hilly, terrigenous and forested headwaters of the Mediterranean eco-region. Based on detailed hydrogeological and hydro-geomorphological surveys and geomorphometric analysis, starting in 2012, a hydro-chemical monitoring activity at the catchment and sub-catchment scale started, and a hydro-chemical dataset was progressively recorded at daily and sub-hourly time steps. Based on this dataset, the authors performed an original procedure to identify different runoff components, derived by applying cascade mass balance filtering. The integration of hydrological and geomorphological approaches allowed us to obtain an interesting conceptualization of the storm flow generation using hydro-chemical signatures related to different runoff components produced during the increasing–decreasing cycle of the flood event magnitude. The hydro-system activated progressively different runoff sources (i.e., groundwater, riparian corridor, hillslope and hollow) and involved various mechanisms (i.e., groundwater ridging, saturation-excess, infiltration-excess and soil pipe exfiltration). The geo-hydrological conceptualization was validated using a hysteresis Q-EC loop analysis performed on selected events that showed how hysteretic indices could be used to characterize the events in respect to their origins, mechanisms and pathways in similar catchments.


2019 ◽  
Vol 33 (4-6) ◽  
pp. 989-1012 ◽  
Author(s):  
Muhammad Saleem Akhter ◽  
Asaad Yahia Shamseldin ◽  
Bruce William Melville

2006 ◽  
Vol 10 (6) ◽  
pp. 937-955 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije ◽  
F. Fenicia ◽  
L. Pfister

Abstract. A new domain, the macropore domain describing subsurface storm flow, has been introduced to the Representative Elementary Watershed (REW) approach. The mass balance equations have been reformulated and the closure relations associated with subsurface storm flow have been developed. The model code, REWASH, has been revised accordingly. With the revised REWASH, a rainfall-runoff model has been built for the Hesperange catchment, a sub-catchment of the Alzette River Basin. This meso-scale catchment is characterised by fast catchment response to precipitation, and subsurface storm flow is one of the dominant runoff generation processes. The model has been evaluated by a multi-criteria approach using both discharge and groundwater table data measured at various locations in the study site. It is demonstrated that subsurface storm flow contributes considerably to stream flow in the study area. Simulation results show that discharges measured along the main river course are well simulated and groundwater dynamics is well captured, suggesting that the model is a useful tool for catchment-scale hydrological analysis.


2021 ◽  
Vol 13 (13) ◽  
pp. 7241
Author(s):  
Anna Palla ◽  
Ilaria Gnecco

Urban flooding has become one of the most frequent natural disasters in recent years, and the low-impact development (LID) approach is currently recognised as an alternative to traditional grey infrastructure to mitigate the negative impact of urbanisation on hydrological processes. The main objective of the present research was to develop a web-GIS platform in order to assess the impact of LID systems on mitigating urban flooding and to support their implementation at the urban catchment scale. The TRIG Eau platform, developed in the framework of the homonymous INTERREG MARITTIMO IT-FR project, is configured as a web-GIS application of the stormwater management model (SWMM). Urban flood conditions were examined for two case studies in Liguria and Tuscany (IT), where DRWH systems are proposed as a mitigation strategy. The presented results and their visualisation showcase the potential of the TRIG Eau platform to better support the implementation of LIDs. Findings from the flood analysis confirm that even for the 10-year return period event, DRWHs are effective in reducing network stress by more than 70% in cases of empty tanks, thus underlining the need for RTC technology to pre-empty the system.


Sign in / Sign up

Export Citation Format

Share Document