scholarly journals Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry

Wear ◽  
2018 ◽  
Vol 394-395 ◽  
pp. 60-70 ◽  
Author(s):  
A.H.S. Bueno ◽  
J. Solis ◽  
H. Zhao ◽  
C. Wang ◽  
T.A. Simões ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohor Chatterjee ◽  
Yu Fan ◽  
Fang Cao ◽  
Aaron A. Jones ◽  
Giovanni Pilloni ◽  
...  

AbstractMicrobiologically influenced corrosion (MIC) is recognized as a considerable threat to carbon steel asset integrity in the oil and gas industry. There is an immediate need for reliable and broadly applicable methods for detection and monitoring of MIC. Proteins associated with microbial metabolisms involved in MIC could serve as useful biomarkers for MIC diagnosis and monitoring. A proteomic study was conducted using a lithotrophically-grown bacterium Desulfovibrio ferrophilus strain IS5, which is known to cause severe MIC in seawater environments. Unique proteins, which are differentially and uniquely expressed during severe microbial corrosion by strain IS5, were identified. This includes the detection of a multi-heme cytochrome protein possibly involved in extracellular electron transfer in the presence of the carbon steel. Thus, we conclude that this newly identified protein associated closely with severe MIC could be used to generate easy-to-implement immunoassays for reliable detection of microbiological corrosion in the field.


Author(s):  
Thilo Reichel ◽  
Jochem Beissel ◽  
Vitaliy Pavlyk ◽  
Gernot Heigl

The paper describes the different industrially used options to produce a clad pipe and explains in detail the manufacture of metallurgically cladded pipes starting with the production of roll bonded plates. In plate manufacturing the advantages as well as the limitations of thermo-mechanical (TM) rolling are discussed. The TM-technology is shown to improve weldability, HIC-resistance, strength and toughness properties of the carbon steel section of the pipe. Moreover, it also improves corrosion resistance of the CRA layer. The pipe manufacturing procedure, which involves two welding technologies for longitudinal welds is described. The carbon steel parts of the pipe are joined using double-sided multi-pass Submerged-Arc-Welding (SAW). The single-pass Electroslag-Welding (ESW) is subsequently used for recladding of the CRA layer. The multi-pass SAW results in excellent mechanical properties of the weld joint, whereas the ESW technique ensures low dilution of CRA with the carbon steel, a smooth weld bead shape and a high corrosion resistance of the deposited layer. With the aid of thermodynamic modeling and numerical simulations it is shown, that the high corrosion resistance is promoted by an intensive mixing within the ESW weld pool and relatively low segregation level of Cr and Mo during solidification. Furthermore, FEM analysis is applied to examine the plastic deformation and residual stresses distribution in the pipe during forming, welding and final calibration. The obtained information assists in optimization of manufacturing procedure, and can also be included in prediction of resulting pipe fatigue during operation.


2019 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
Zuraini Din ◽  

In the oil and gas industry, pipeline is the major transportation medium to deliver the products. According to [1] containment of pipeline loss to indicate that corrosion has been found to be the most predominant cause for failures of buried metal pipes. MIC has been identified as one of the major causes of underground pipeline corrosion failure and Sulphate Reducing Bacteria (SRB) are the main reason causing MIC, by accelerating corrosion rate. The objectives of this study is to study the SRB growth, Desulfovibrio desulfuricans ATCC 7757 due to pH and determine the optimum value controlling the bacteria growth on the internal pipe of carbon steel grade API X70. The result shows that the optimum SRB growth is at range pH 5-5 to 6.5 and the exposure time of 7 to 14 days. At pH 6.5 the maximum corrosion rate is 1.056 mm/year. Corrosion phenomena on carbon steel in the study proven had influence by pH and time. From this result pitting corrosion strongly attack at carbon steel pipe. In the future project, it is recommended to study the effect of different pipe location for example the pipeline under seawater.


2021 ◽  
Author(s):  
Chinedu Oragwu ◽  
Daniel Molyneux ◽  
Lukeman Lawal ◽  
Stanley Ameh

Abstract Carbon steel pipelines are used to transport hydrocarbons globally because carbon steel is relatively easier to fabricate, safe for use, raw materials are available and less expensive. Amidst these benefits, carbon steel is susceptible to severe corrosion and other anomalies. Pipeline corrosion is a significant concern in the oil and gas industry. It has caused several minor and catastrophic losses of containment with resultant fatalities, environmental pollutions, asset damage, and production downtimes. The increasing failures of in-service pipelines have led the Department of Petroleum Resources (DPR) to intensify regulatory scrutiny of pipeline integrity assessment and management in Nigeria to ensure strict compliance to the regulatory requirements by the Oil Producing Companies. According to DPR Act (Section 2.5.2.1), all pipelines greater than 6" size diameter must be inspected every five (5) years with intelligent pigs (inline inspection tools) that would provide the accurate condition of the pipeline. However, many pipelines in Nigeria are unpiggable or difficult to inspect with intelligent pigs due to the unavailability of pigging facilities (especially in brownfields), pipelines with short bend radiuses, dual diameters, flow parameters, etcetera. This paper explores case studies involving the use of advanced inline inspection technology to conduct inline inspection of difficult-to-inspect dual-diameter pipelines.


2019 ◽  
Vol 20 (2) ◽  
pp. 84-93
Author(s):  
Nendi Suhendi Syafei ◽  
S S Rizki ◽  
Suryaningsih Suryaningsih ◽  
Darmawan Hidayat

The oil and gas industry exploration that will generally be followed by corrosive substances including sweet gas (eg H2S and CO2), it will result in corrosion event. The corrosion stress cracking will cause the carbon steel pipe to break so that production oil and gas can be stopped. The research aims in this paper is to analyze the corrosion event of carbon steel pipe in laboratory scale on acid environment with the existence of sweet gas H2O and CO2 by using three points loading method. This research uses carbon steel pipe API 5L-X65 which stay in condensation environment of 1350 ml aquades, 150 ml acetic acid. Based on the figure (5.a) and figure (5.b) that the corrosion rate will increase with increasing exposure time, and the greater the stress that is given, the corrosion rate increases according to the image (6.a) and image (6.b). Whereas based on the results of microstructural tests using optical microscopes, pitting corrosion occurs, and corrosion events  occur are the stress corrosion cracking transgranular and intergranular based on figure 8.  


2019 ◽  
Vol 797 ◽  
pp. 393-401 ◽  
Author(s):  
Nur Balqis Rusli ◽  
Najmiddin Yaakob ◽  
Robert Mikhail Savory

— Corrosion is prevalent throughout the world, none less so than in the oil and gas industry. Managing and mitigating corrosion in refining complexes is of paramount importance in order to prevent undesirable consequences such as major fires, explosions and Boiling Liquid Expanding Vapor Explosion (BLEVE) due to Loss of Primary Containment caused by the thinning and ultimate failure of pipelines and vessel walls. Analysis of a platformer unit at a Malaysian refinery has identified the occurrence of thermal fatigue and erosion corrosion on the Vent Gas Tower (VGT) Caustic Circulation line, which in turn has led to the excessive degradation of the walls of a venturi scrubber and the 8’’ caustic circulation line with initial thickness of 12.70mm. The rate of corrosion (0.88 mm/year) of the 8’’ caustic circulation line exceeds the standard allowable carbon steel corrosion rate (0.1 mm/year) as stated in API 571 Damage Mechanisms Affecting Fixed Equipment in the Refining Industry. This indicates that the circulation line has significant potential to fail which would lead to a major HSE incident. Based on these findings it is recommended that the refinery in question modifies the line by increasing the thickness of the line and include a cooling system to reduce temperature swing (ΔT) to below 93°C. Besides that, it is suggested that the implementation of Corrosion-Resistant Alloys (CRA) is conducted on the line. According to ASME B31.3 and supported by ASTM A 193, the line can be replaced with nickel-based alloy, alloy 800H and killed carbon steel which have high resistivity to corrosion than carbon steel. However, more comprehensive studies need to be conducted to identify the viable mitigation methods that are suitable to be implemented on the Vent Gas Tower (VGT) Caustic Circulation line.


2018 ◽  
Vol 19 (2) ◽  
pp. 21-31 ◽  
Author(s):  
Nendi Suhendi Syafei ◽  
Darmawan Hidayat ◽  
Emilliano Emilliano ◽  
Liu Kin Men

The oil and gas industry exploration that will generally be followed by corrosive substances including sweet gas (eg H2S and CO2), it will result in corrosion event. The corrosion stress cracking will cause the carbon steel pipe to break so that production oil and gas can be stopped. The research aims in this paper is to analyze the corrosion event of carbon steel pipe in laboratory scale on acid environment with the existence of sweet gas H2O and CO2 by using three points loading method. This research uses carbon steel pipe API 5L-X65 which stay in condensation environment of 7700 ml aquades, 250 ml acetic acid and 50 ml ammonia, then filled sweet gas CO2 and H2S in saturated state. Based on the test results of microstructure and microscope polarized, there is a phenomenon corrosion stress cracking, i.e transgranular stress cracking corrosion and intergranular stress cracking corrosion. The accelerate corrosion that happened at the test sample will be greater if ever greater given deflection for the time of the same presentation. Crack deepness in the test of the test sample will deeper if ever greater given deflection. The cracks in the sample test will deeper if it was given stress σ greater for the same exposure time.


Author(s):  
Shunichi Tachibana ◽  
Yota Kuronuma ◽  
Tomoyuki Yokota ◽  
Shinji Mitao ◽  
Hitoshi Sueyoshi ◽  
...  

Demand for CRAs (Corrosion Resistant Alloys) clad steel is getting increased for pipeline application of oil and gas industry because of economic advantage over solid CRAs. CRAs clad steel consists of a CRAs layer for corrosion resistance and a carbon steel for mechanical properties. Nickel based Alloy625 is known to be suitable for harsh environmental condition such as high temperature and high pressure H2S (hydrogen sulfide) condition. In this paper, the corrosion resistance of Alloy625/X65 clad steel plate for pipe produced by TMCP (Thermo-Mechanical Control Process) was investigated. TTP (Time - Temperature - Precipitation) and TTS (Time - Temperature - Sensitization) diagram of Alloy625 indicated precipitation nose, e.g. M6C and M23C6 which would cause deterioration of corrosion resistance. TMCP enable Alloy625 to avoid long time exposure to the precipitation nose. In Huey test, the corrosion rate in TMCP was almost the same as that of solution treated Alloy625 and smaller than that in Q-T (Quench and Temper). In ferric chloride pitting test, no pitting was observed in Alloy625 layer of TMCP type clad steel. In addition, the corrosion test simulating service environment using autoclave apparatus was conducted under the condition of 0.39MPa H2S - 0.53MPa CO2 - Cl− solution at 200°C. Alloy625 clad steel produced by TMCP showed neither SSC (Sulfide stress corrosion cracking) nor crevice corrosion. All the mechanical properties of base carbon steel satisfied API 5L grade X65 specification by optimizing TMCP conditions. It is notable that 85% SATT of DWTT was below −10 °C. Thus, Alloy625/X65 clad steel plate for pipe produced by TMCP with both superior corrosion resistance and low temperature toughness has been developed.


Sign in / Sign up

Export Citation Format

Share Document