Analysis of the performance of PVD AlTiN coating with five different Al/Ti ratios during the high-speed turning of stainless steel 304 under dry and wet cooling conditions

Wear ◽  
2021 ◽  
pp. 204213
Author(s):  
Qianxi He ◽  
Jose M. Paiva ◽  
Joern Kohlscheen ◽  
Stephen C. Veldhuis
2009 ◽  
Vol 407-408 ◽  
pp. 619-623
Author(s):  
Shao Fu Huang ◽  
Di Zhu ◽  
Yong Bin Zeng ◽  
Yong Liu ◽  
Wei Wang

In order to remove the reaction products generated from the interelectrode gap of the electrochemical micro-machining, an angle adjustable electrochemical micro-machining equipment has been developed, which consists of angle adjustment unit, feed system unit, etc. Small holes have been drilled on thin stainless steel 304 by using our developed equipment. The experimental results show that the adjusted cathode working angle and high speed of cathode rotation improves micro-ECM performance characteristics.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Fitrah Qalbina ◽  
Deendarlianto Deendarlianto ◽  
Indarto Indarto ◽  
Teguh Wibowo

Spray cooling merupakan aplikasi dari droplets yang digunakan sebagai salah satu teknik pendinginan. Pemanfaatan dari multiple droplets ini banyak dikaji sebagai sistem pendinginan pada peralatan elektronik dan pembuatan material quenching. Dinamika tumbukan multiple droplets pada permukaan bidang miring yang dipanaskan akan dikaji pada penelitian ini. Material uji yang digunakan adalah stainless steel 304 . Temperatur permukaan yang diamati adalah 120 ºC, 180 ºC dan 220 ºC pada bilangan Weber medium 70 dengan variasi bidang kemiringan adalah sebesar 10º, 20º dan 30º. Dinamika droplet selama tumbukan diamati menggunakan high-speed camera dengan kecepatan 4000 fps kemudian hasilnya diolah menggunakan image processing. Telah diperoleh hasil bahwa spreading ratio tertinggi terjadi saat temperatur permukaan 180 ºC pada sudut kemiringan 30 º dan terendah pada temperatur 220 ºC. Fenomena secondary droplet dapat meningkatkan nilai spreading ratio. Adapun fenomena bounching terjadi pada temperatur 220 ºC


2014 ◽  
Vol 1017 ◽  
pp. 373-376
Author(s):  
Keisuke Hara ◽  
Ryo Sasaki ◽  
Toshihiko Koiwa ◽  
Hiromi Isobe

Ultrasonic cutting is a technique that can improve machinability such as fine surface, reduce tool worn out and etc. To improve processing speed of ultrasonic cutting is difficult due to the effects of tool oscillation are invalidated when cutting speed exceeds maximum tool oscillating velocity. In previous report, high speed principal direction ultrasonic turning without thrust direction vibration experiments for stainless steel were carried out to improve processing speed and products quality. In ultrasonic turning, tool worn out and built up edge generation were reduced compare with ordinary turning. Fine surface without thrust direction periodically cut marks were obtained in ultrasonic turning experiments. In this study, the effects of chip breaker shape and insert material were investigated. Surface roughness, chip worn out and built up edge generation were investigated in this study.


2013 ◽  
Vol 794 ◽  
pp. 248-254
Author(s):  
Atul P. Kulkarni ◽  
Vikas G. Sargade

AISI 304 austenitic stainless steel is generally “difficult-to-cut” material than other types of steel on account of their high strength, high work hardening tendency and poor thermal conductivity. The focus of the paper is on the dry, high speed machining which is ecologically desirable and cost effective. It is also the future of machining and called as green machining. PVD multilayered TiN/TiAlN and TiAlN/TiSiN coated inserts were used for dry, high speed turning of AISI 304 austenitic stainless steels material. TiN/TiAlN coating was deposited using “Cathodic Arc Evaporation” (CAE) technique where as TiAlN/TiSiN coating was deposited using “Closed-Field Unbalanced Magnetron Sputtering” (CFUBMS) technique. Coatings are deposited on K-grade (K-20) cemented carbide insert. Scanning Electron Microscopy (SEM), microhardness tester and scratch tester were used to examine microstructure, microhardness and adhesion of coating. The thickness of the both coating was found to be 3.8 ±2 µm. TiN/TiAlN coating demonstrated micro-hardness value 34 GPa where as TiAlN/TiSiN coating shows 37 GPa. The adhesion strength of the TiAlN/TiSiN coating is 86 N and that of TiN/TiAlN coating is 83 N.The turning tests were conducted in dry machining environment at cutting speeds in the range of 100 to 340 m/min, feed in the range of 0.08 to 0.20 mm/rev keeping depth of cut constant at 1 mm. The influences of cutting speed, feed and tool coating were investigated on the machined surface roughness, flank wear and cutting force. TiAlN/TiSiN coated tool showed better performance and exhibited lower cutting forces than TiN/TiAlN coated tool. Built-up edge was not observed during using coated tool due to better thermal stability of the coating. The research work findings will also provide useful economic machining solution in case of dry, high speed turning of AISI 304 stainless steel, which is otherwise usually, machined by costly PCD or CBN tools. The present approach and results will be helpful for understanding the machinability of AISI 304 stainless steel during dry, high speed turning for the manufacturing engineers.


2014 ◽  
Vol 69 (1) ◽  
pp. 46-53 ◽  
Author(s):  
R. L. Peng ◽  
J.-M. Zhou ◽  
S. Johansson ◽  
A. Bellinius ◽  
V. Bushlya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document