Mechanistic Analysis of Human Skin Distribution and Follicular Targeting of Adapalene-Loaded Biodegradable Nanospheres With an Insight Into Hydrogel Matrix Influence, In Vitro Skin Irritation, and In Vivo Tolerability

2017 ◽  
Vol 106 (10) ◽  
pp. 3140-3149 ◽  
Author(s):  
Marwa Ahmed Sallam ◽  
María Teresa Marín Boscá
Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6141
Author(s):  
Michael Termer ◽  
Christophe Carola ◽  
Andrew Salazar ◽  
Cornelia M. Keck ◽  
Joerg von von Hagen

Avobenzone, one of the most commonly used UV filters in topical sunscreens, is susceptible to photodegradation with a consequential reduction of its UV absorbing properties. This loss of function may lead to skin irritation, photodermatosis, and photoallergic reactions caused by photodegradation byproducts. In this work, we aim to address this issue with a substance named methoxy-monobenzoylmethane (MeO-MBM), which is neither a UVB nor a UVA filter, but which converts to avobenzone, a known and approved UVA filter, under mainly UVB light irradiation. The antioxidant and intracellular radical formation properties of MeO-MBM were compared to the ones of avobenzone. The UV irradiation of MeO-MBM led to an increase in UV absorption primarily in the UVA range after conversion, both in vitro and in vivo. HPTLC and UHPLC studies illustrate the conversion of MeO-MBM to avobenzone in vitro after irradiation at 250 kJ/m2, reaching a conversion rate of 48.8%. A stable molecular antioxidant activity was observed, since 100-µM MeO-MBM was measured to be 11.2% in the DPPH assay, with a decrease to 9.7% after irradiation. In comparison, the molecular antioxidant activity of 100-µM avobenzone was determined to be 0.8%. In keratinocytes, MeO-MBM reduces the intracellular ROS by 90% and avobenzone by 75% with tBHP as the inducer and by 53% and 57%, respectively, when induced by pyocyanin, indicating the redox scavenging capacity of both these molecules. These results indicate that MeO-MBM functions initially as an antioxidant material and as a photoantioxidant during its conversion process to avobenzone. This research provides insight into the development of active ingredients for topical applications with dynamic functionalities. Using this approach, we demonstrate the possibility to extend the UV protection offered to skin cells while combating cellular stress in parallel.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Author(s):  
AMOL SHETE ◽  
PRIYANKA THORAT ◽  
RAJENDRA DOIJAD ◽  
SACHIN SAJANE

Objective: The objectives of present investigation were to prepare and evaluate proniosomes of neomycin sulphate (NS) by coacervation phase separation method by using sorbitan monostearate (span 60) and lecithin as a surfactant to increase the penetration through the skin and study the effect of concentration of the same. Methods: Proniosomes of neomycin sulphate (NS) were prepared by coacervation phase separation method by using span 60 and lecithin. The effect of concentration of span 60 and lecithin was studied by factorial design. The prepared proniosomes were converted to gel by using carbopol as a gelling agent. The prepared formulations were evaluated for entrapment efficiency, in vitro drug diffusion, in vitro antibacterial activity and in vivo skin irritation test etc. Results: All Formulation showed the percentage entrapment efficiency in the range 38.31±0.05% to 77.96±0.06%, good homogeneity and gel was easily spreadable with minimal of shear. Optimized formulation showed enhanced rate of diffusion in vitro, increase in zone of inhibition against staphylococcus aureus, no skin irritation and showed good stability. Conclusion: The results of present study indicates that proniosomal gel formulated by using combination of span 60, Lecithin, cholesterol can be used to enhance skin delivery of NS because of excellent permeation of drug. Developed proniosomal gel formulation was promising carrier for NS


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 2 (1) ◽  
pp. FDD28 ◽  
Author(s):  
Oleg Babii ◽  
Sergii Afonin ◽  
Tim Schober ◽  
Liudmyla V Garmanchuk ◽  
Liudmyla I Ostapchenko ◽  
...  

Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.


2003 ◽  
Vol 77 (20) ◽  
pp. 11274-11278 ◽  
Author(s):  
B. W. A. van der Strate ◽  
J. L. Hillebrands ◽  
S. S. Lycklama à Nijeholt ◽  
L. Beljaars ◽  
C. A. Bruggeman ◽  
...  

ABSTRACT The role of leukocytes in the in vivo dissemination of cytomegalovirus was studied in this experiment. Rat cytomegalovirus (RCMV) could be transferred to rat granulocytes and monocytes by cocultivation with RCMV-infected fibroblasts in vitro. Intravenous injection of purified infected granulocytes or monocytes resulted in a systemic infection in rats, indicating that our model is a powerful tool to gain further insight into CMV dissemination and the development of new antivirals.


2002 ◽  
Vol 74 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Lanny S. Liebeskind ◽  
Jiri Srogl ◽  
Cecile Savarin ◽  
Concepcion Polanco

Given the stability of the bond between a mercaptide ligand and various redox-active metals, it is of interest that Nature has evolved significant metalloenzymatic processes that involve key interactions of sulfur-containing functionalities with metals such as Ni, Co, Cu, and Fe. From a chemical perspective, it is striking that these metals can function as robust biocatalysts in vivo, even though they are often "poisoned" as catalysts in vitro through formation of refractory metal thiolates. Insight into the nature of this chemical discrepancy is under study in order to open new procedures in synthetic organic and organometallic chemistry.


Sign in / Sign up

Export Citation Format

Share Document