scholarly journals The C. elegans CBFβ homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages

2007 ◽  
Vol 309 (2) ◽  
pp. 259-272 ◽  
Author(s):  
Dan Xia ◽  
Yuxia Zhang ◽  
Xinxin Huang ◽  
Yinyan Sun ◽  
Hong Zhang
Keyword(s):  
2020 ◽  
Author(s):  
Sneha L. Koneru ◽  
Mark Hintze ◽  
Dimitris Katsanos ◽  
Michalis Barkoulas

AbstractA fundamental question in medical genetics is how the genetic background modifies the phenotypic outcome of key mutations. We address this question by focusing on the epidermal seam cells, which display stem cell properties in Caenorhabditis elegans. We demonstrate that a null mutation in the GATA transcription factor egl-18, which is involved in seam cell fate maintenance, is more tolerated and thus has lower expressivity in the divergent CB4856 isolate from Hawaii than the lab reference strain N2 from Bristol. We identify multiple quantitative trait loci (QTLs) underlying the difference in mutation expressivity between the two isolates. These QTLs reveal cryptic genetic variation, which acts to reinforce seam cell fate through potentiating Wnt signalling. Within one QTL region, a single amino acid deletion in the heat shock protein HSP-110 in CB4856 lowers egl-18 mutation expressivity. Our work underscores that natural variation in conserved heat shock proteins can shape mutation expressivity.


2019 ◽  
Author(s):  
Suzanne E. M. van der Horst ◽  
Janine Cravo ◽  
Alison Woollard ◽  
Juliane Teapal ◽  
Sander van den Heuvel

ABSTRACTA correct balance between proliferative and asymmetric cell divisions underlies normal development, stem cell maintenance and tissue homeostasis. What determines whether cells undergo symmetric or asymmetric cell division is poorly understood. To gain insight in the mechanisms involved, we studied the stem cell-like seam cells in the Caenorhabditis elegans epidermis. Seam cells go through a reproducible pattern of asymmetric divisions, instructed by non-canonical Wnt/β-catenin asymmetry signaling, and symmetric divisions that increase the seam cell number. Using time-lapse fluorescence microscopy, we show that symmetric cell divisions maintain the asymmetric localization of Wnt/β-catenin pathway components. Observations based on lineage-specific knockout and GFP-tagging of endogenous pop-1 support the model that POP-1TCF induces differentiation at a high nuclear level, while low nuclear POP-1 promotes seam cell self-renewal. Before symmetric division, the transcriptional regulator rnt-1Runx and cofactor bro-1CBFβ temporarily bypass Wnt/β-catenin asymmetry by downregulating pop-1 expression. Thereby, RNT-1/BRO-1 appears to render POP-1 below the level required for its repressor function, which converts differentiation into self-renewal. Thus, opposition between the C. elegans Runx/CBFβ and TCF stem-cell regulators controls the switch between asymmetric and symmetric seam cell division.


2015 ◽  
Vol 112 (3) ◽  
pp. E287-E296 ◽  
Author(s):  
Omid F. Harandi ◽  
Victor R. Ambros

Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing and proliferative behavior in the seam cell lineages. We show that mutations of genes in the heterochronic developmental timing pathway, including lin-14 (lineage defect), lin-28, lin-46, and the lin-4 and let-7 (lethal defects)-family microRNAs, affect the activity of LIT-1/POP-1 cellular asymmetry machinery and APR-1 polarity during larval development. Surprisingly, heterochronic mutations that enhance LIT-1 activity in seam cells can simultaneously also enhance the opposing, POP-1 activity, suggesting a role in modulating the potency of the cellular polarizing activity of the LIT-1/POP-1 system as development proceeds. These findings illuminate how the evolutionarily conserved cellular asymmetry machinery can be coupled to microRNA-regulated developmental pathways for robust regulation of stem cell maintenance and proliferation during the course of development. Such genetic interactions between developmental timing regulators and cell polarity regulators could underlie transitions between asymmetric and symmetric stem cell fates in other systems and could be deregulated in the context of developmental disorders and cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjing Qi ◽  
Erika D. V. Gromoff ◽  
Fan Xu ◽  
Qian Zhao ◽  
Wei Yang ◽  
...  

AbstractMulticellular organisms coordinate tissue specific responses to environmental information via both cell-autonomous and non-autonomous mechanisms. In addition to secreted ligands, recent reports implicated release of small RNAs in regulating gene expression across tissue boundaries. Here, we show that the conserved poly-U specific endoribonuclease ENDU-2 in C. elegans is secreted from the soma and taken-up by the germline to ensure germline immortality at elevated temperature. ENDU-2 binds to mature mRNAs and negatively regulates mRNA abundance both in the soma and the germline. While ENDU-2 promotes RNA decay in the soma directly via its endoribonuclease activity, ENDU-2 prevents misexpression of soma-specific genes in the germline and preserves germline immortality independent of its RNA-cleavage activity. In summary, our results suggest that the secreted RNase ENDU-2 regulates gene expression across tissue boundaries in response to temperature alterations and contributes to maintenance of stem cell immortality, probably via retaining a stem cell specific program of gene expression.


Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1527-1532 ◽  
Author(s):  
Steven A Frank ◽  
Yoh Iwasa ◽  
Martin A Nowak

Abstract Epidermal and intestinal tissues divide throughout life to replace lost surface cells. These renewing tissues have long-lived basal stem cell lineages that divide many times, each division producing one stem cell and one transit cell. The transit cell divides a limited number of times, producing cells that move up from the basal layer and eventually slough off from the surface. If mutation rates are the same in stem and transit divisions, we show that minimal cancer risk is obtained by using the fewest possible stem divisions subject to the constraints imposed by the need to renew the tissue. In this case, stem cells are a necessary risk imposed by the constraints of tissue architecture. Cairns suggested that stem cells may have lower mutation rates than transit cells do. We develop a mathematical model to study the consequences of different stem and transit mutation rates. Our model shows that stem cell mutation rates two or three orders of magnitude less than transit mutation rates may favor relatively more stem divisions and fewer transit divisions, perhaps explaining how renewing tissues allocate cell divisions between long stem and short transit lineages.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 185-206 ◽  
Author(s):  
Rebecca M Terns ◽  
Peggy Kroll-Conner ◽  
Jiangwen Zhu ◽  
Sooyoun Chung ◽  
Joel H Rothman

To identify genomic regions required for establishment and patterning of the epidermis, we screened 58 deficiencies that collectively delete at least ∼67% of the Caenorhabditis elegans genome. The epidermal pattern of deficiency homozygous embryos was analyzed by examining expression of a marker specific for one of the three major epidermal cell types, the seam cells. The organization of the epidermis and internal organs was also analyzed using a monoclonal antibody specific for epithelial adherens junctions. While seven deficiencies had no apparent effect on seam cell production, 21 were found to result in subnormal, and five in excess numbers of these cells. An additional 23 deficiencies blocked expression of the seam cell marker, in some cases without preventing cell proliferation. Two deficiencies result in multinucleate seam cells. Deficiencies were also identified that result in subnormal numbers of epidermal cells, hyperfusion of epidermal cells into a large syncytium, or aberrant epidermal differentiation. Finally, analysis of internal epithelia revealed deficiencies that cause defects in formation of internal organs, including circularization of the intestine and bifurcation of the pharynx lumen. This study reveals that many regions of the C. elegans genome are required zygotically for patterning of the epidermis and other epithelia.


Sign in / Sign up

Export Citation Format

Share Document