scholarly journals Molecular patterning of the embryonic cranial mesenchyme revealed by genome-wide transcriptional profiling

2019 ◽  
Vol 455 (2) ◽  
pp. 434-448 ◽  
Author(s):  
Krishnakali Dasgupta ◽  
Jong Uk Chung ◽  
Kesava Asam ◽  
Juhee Jeong
2014 ◽  
Vol 5 ◽  
Author(s):  
Barbara Blanco-Ulate ◽  
Abraham Morales-Cruz ◽  
Katherine C. H. Amrine ◽  
John M. Labavitch ◽  
Ann L. T. Powell ◽  
...  

2012 ◽  
Vol 215 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Georg Homuth ◽  
Alexander Teumer ◽  
Uwe Völker ◽  
Matthias Nauck

The metabolome, defined as the reflection of metabolic dynamics derived from parameters measured primarily in easily accessible body fluids such as serum, plasma, and urine, can be considered as the omics data pool that is closest to the phenotype because it integrates genetic influences as well as nongenetic factors. Metabolic traits can be related to genetic polymorphisms in genome-wide association studies, enabling the identification of underlying genetic factors, as well as to specific phenotypes, resulting in the identification of metabolome signatures primarily caused by nongenetic factors. Similarly, correlation of metabolome data with transcriptional or/and proteome profiles of blood cells also produces valuable data, by revealing associations between metabolic changes and mRNA and protein levels. In the last years, the progress in correlating genetic variation and metabolome profiles was most impressive. This review will therefore try to summarize the most important of these studies and give an outlook on future developments.


2017 ◽  
Author(s):  
Abraham Morales-Cruz ◽  
Gabrielle Allenbeck ◽  
Rosa Figueroa-Balderas ◽  
Vanessa E. Ashworth ◽  
Daniel P. Lawrence ◽  
...  

SummaryGrapevines, like other perennial crops, are affected by so-called ‘trunk diseases’, which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e., metatranscriptomics) approach that can monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for mapping and quantifying DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally-infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs.


Author(s):  
Xia Zhang ◽  
Brayden Weir ◽  
Hongru Wei ◽  
Zhiwei Deng ◽  
Xiaoqi Zhang ◽  
...  

AbstractChickpea is an economically important legume crop with high nutritional value in human diets. Aluminium-toxicity poses a significant challenge for the yield improvement of this increasingly popular crop in acidic soils. The wild progenitors of chickpea may provide a more diverse gene pool for Al-tolerance in chickpea breeding. However, the genetic basis of Al-tolerance in chickpea and its wild relatives remains largely unknown. Here, we assessed the Al-tolerance of six selected wild Cicer accessions by measuring the root elongation in solution culture under control (0 µM Al3+) and Al-treatment (30 µM Al3+) conditions. Al-treatment significantly reduced the root elongation in all target lines compared to the control condition after 2-day’s growth. However, the relative reduction of root elongation in different lines varied greatly: 3 lines still retained significant root growth under Al-treatment, whilst another 2 lines displayed no root growth at all. We performed genome-wide identification of multidrug and toxic compound extrusion (MATE) encoding genes in the Cicer genome. A total of 56 annotated MATE genes were identified, which divided into 4 major phylogeny groups (G1-4). Four homologues to lupin LaMATE (> 50% aa identity; named CaMATE1-4) were clustered with previously characterised MATEs related to Al-tolerance in various other plants. qRT-PCR showed that CaMATE2 transcription in root tips was significantly up-regulated upon Al-treatment in all target lines, whilst CaMATE1 was up-regulated in all lines except Bari2_074 and Deste_064, which coincided with the lines displaying no root growth under Al-treatment. Transcriptional profiling in five Cicer tissues revealed that CaMATE1 is specifically transcribed in the root tissue, further supporting its role in Al-detoxification in roots. This first identification of MATE-encoding genes associated with Al-tolerance in Cicer paves the ways for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.


2021 ◽  
Author(s):  
Fanny Demars ◽  
Ralitsa Todorova ◽  
Gabriel Makdah ◽  
Antonin Forestier ◽  
Marie-Odile Krebs ◽  
...  

Current treatments for trauma-related disorders remain ineffective for many patients. Here, we modeled interindividual differences in post-therapy fear relapse with a novel ethologically relevant trauma recovery paradigm. After traumatic fear conditioning, rats underwent fear extinction while foraging in a large enriched arena, permitting the expression of a wide spectrum of behaviors, assessed by an automated pipeline. This multidimensional behavioral assessment revealed that post-conditioning fear response profiles clustered into two groups, respectively characterized by active vs. passive fear responses. After trauma, some animals expressed fear by freezing, while others darted, as if fleeing from danger. Remarkably, belonging to the darters or freezers group predicted differential vulnerability to fear relapse after extinction. Moreover, genome-wide transcriptional profiling revealed that these groups differentially regulated specific sets of genes, some of which have previously been implicated in anxiety and trauma-related disorders. Our results suggest that post-trauma behavioral phenotypes and the associated epigenetic landscapes can serve as markers of fear relapse susceptibility, and thus may be instrumental for future development of more effective treatments for psychiatric patients.


2012 ◽  
Vol 186 (4) ◽  
pp. 349-358 ◽  
Author(s):  
Soumyaroop Bhattacharya ◽  
Diana Go ◽  
Daria L. Krenitsky ◽  
Heidi L. Huyck ◽  
Siva Kumar Solleti ◽  
...  

2002 ◽  
Vol 184 (17) ◽  
pp. 4881-4890 ◽  
Author(s):  
Robert A. Britton ◽  
Patrick Eichenberger ◽  
Jose Eduardo Gonzalez-Pastor ◽  
Paul Fawcett ◽  
Rita Monson ◽  
...  

ABSTRACT Sigma-H is an alternative RNA polymerase sigma factor that directs the transcription of many genes that function at the transition from exponential growth to stationary phase in Bacillus subtilis. Twenty-three promoters, which drive transcription of 33 genes, are known to be recognized by sigma-H-containing RNA polymerase. To identify additional genes under the control of sigma-H on a genome-wide basis, we carried out transcriptional profiling experiments using a DNA microarray containing >99% of the annotated B. subtilis open reading frames. In addition, we used a bioinformatics-based approach aimed at the identification of promoters recognized by RNA polymerase containing sigma-H. This combination of approaches was successful in confirming most of the previously described sigma-H-controlled genes. In addition, we identified 26 putative promoters that drive expression of 54 genes not previously known to be under the direct control of sigma-H. Based on the known or inferred function of most of these genes, we conclude that, in addition to its previously known roles in sporulation and competence, sigma-H controls genes involved in many physiological processes associated with the transition to stationary phase, including cytochrome biogenesis, generation of potential nutrient sources, transport, and cell wall metabolism.


Sign in / Sign up

Export Citation Format

Share Document