Comprehensive whole genome survey analyses of male and female brown-spotted flathead fish Platycephalus sp.1

Genomics ◽  
2020 ◽  
Vol 112 (6) ◽  
pp. 4742-4748
Author(s):  
Shengyong Xu ◽  
Hao Zhang ◽  
Tianxiang Gao
Hypertension ◽  
2010 ◽  
Vol 55 (5) ◽  
pp. 1231-1238 ◽  
Author(s):  
Fadi J. Charchar ◽  
Michael Kaiser ◽  
Andrew J. Bingham ◽  
Nina Fotinatos ◽  
Fahima Ahmady ◽  
...  

2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Guo-qi Li ◽  
Li-xiao Song ◽  
Chang-qing Jin ◽  
Miao Li ◽  
Shi-pei Gong ◽  
...  

AbstractApocynum venetum is an eco-economic plant that exhibits high stress resistance. In the present paper, we carried out a whole-genome survey of A. venetum in order to provide a foundation for its whole-genome sequencing. High-throughput sequencing technology (Illumina NovaSep) was first used to measure the genome size of A. venetum, and bioinformatics methods were employed for the evaluation of the genome size, heterozygosity ratio, repeated sequences, and GC content in order to provide a foundation for subsequent whole-genome sequencing. The sequencing analysis results indicated that the preliminary estimated genome size of A. venetum was 254.40 Mbp, and its heterozygosity ratio and percentage of repeated sequences were 0.63 and 40.87%, respectively, indicating that it has a complex genome. We used k-mer = 41 to carry out a preliminary assembly and obtained contig N50, which was 3841 bp with a total length of 223949699 bp. We carried out further assembly to obtain scaffold N50, which was 6196 bp with a total length of 227322054 bp. We performed simple sequence repeat (SSR) molecular marker prediction based on the A. venetum genome data and identified a total of 101918 SSRs. The differences between the different types of nucleotide repeats were large, with mononucleotide repeats being most numerous and hexanucleotide repeats being least numerous. We recommend the use of the ‘2+3’ (Illumina+PacBio) sequencing combination to supplement the Hi-C technique and resequencing technique in future whole-genome research in A. venetum.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Sheng-yong Xu ◽  
Na Song ◽  
Shi-jun Xiao ◽  
Tian-xiang Gao

Abstract The marbled rockfish Sebastiscus marmoratus is an ecologically and economically important marine fish species distributed along the northwestern Pacific coast from Japan to the Philippines. Here, next-generation sequencing was used to generate a whole genome survey dataset to provide fundamental information of its genome and develop genome-wide microsatellite markers for S. marmoratus. The genome size of S. marmoratus was estimated as approximate 800 Mb by using K-mer analyses, and its heterozygosity ratio and repeat sequence ratio were 0.17% and 39.65%, respectively. The preliminary assembled genome was nearly 609 Mb with GC content of 41.3%, and the data were used to develop microsatellite markers. A total of 191,592 microsatellite motifs were identified. The most frequent repeat motif was dinucleotide with a frequency of 76.10%, followed by 19.63% trinucleotide, 3.91% tetranucleotide, and 0.36% pentanucleotide motifs. The AC, GAG, and ATAG repeats were the most abundant motifs of dinucleotide, trinucleotide, and tetranucleotide motifs, respectively. In summary, a wide range of candidate microsatellite markers were identified and characterized in the present study using genome survey analysis. High-quality whole genome sequence based on the “Illumina+PacBio+Hi-C” strategy is warranted for further comparative genomics and evolutionary biology studies in this species.


2021 ◽  
Author(s):  
Paulina Tomaszewska ◽  
Maria S Vorontsova ◽  
Stephen A Renvoize ◽  
Sarah Z Ficinski ◽  
Joseph Tohme ◽  
...  

Abstract Background and Aims Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment​, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA, and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. Methods Some 362 forage grass accessions from international germplasm collections were studied, and ploidy determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. Key Results Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs​. In situ hybridization with a combination of repetitive DNA and genomic DNA probes, identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. Conclusions We suggest a new coherent nomenclature for the genomes present​. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for U. brizantha, U. decumbens, and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and will assist in measuring and conserving biodiversity in grasslands.


2021 ◽  
Vol 43 (3) ◽  
pp. 2048-2058
Author(s):  
Chenghao Jia ◽  
Tianyan Yang ◽  
Takashi Yanagimoto ◽  
Tianxiang Gao

Sebastiscus species, marine rockfishes, are of essential economic value. However, the genomic data of this genus is lacking and incomplete. Here, whole genome sequencing of all species of Sebastiscus was conducted to provide fundamental genomic information. The genome sizes were estimated to be 802.49 Mb (S. albofasciatus), 786.79 Mb (S. tertius), and 776.00 Mb (S. marmoratus) by using k-mer analyses. The draft genome sequences were initially assembled, and genome-wide microsatellite motifs were identified. The heterozygosity, repeat ratios, and numbers of microsatellite motifs all suggested possibly that S. tertius is more closely related to S. albofasciatus than S. marmoratus at the genetic level. Moreover, the complete mitochondrial genome sequences were assembled from the whole genome data and the phylogenetic analyses genetically supported the validation of Sebastiscus species. This study provides an important genome resource for further studies of Sebastiscus species.


2008 ◽  
Vol 1 (3-4) ◽  
pp. 135-148 ◽  
Author(s):  
Pierre-Olivier de Franco ◽  
Sylvie Rousvoal ◽  
Thierry Tonon ◽  
Catherine Boyen

2019 ◽  
Vol 31 (6) ◽  
pp. 1212-1213
Author(s):  
Detlef Weigel

2012 ◽  
Vol 2 ◽  
Author(s):  
Paola Sebastiani ◽  
Alberto Riva ◽  
Monty Montano ◽  
Phillip Pham ◽  
Ali Torkamani ◽  
...  

Author(s):  
Paulina Tomaszewska ◽  
Maria S. Vorontsova ◽  
Stephen A. Renvoize ◽  
Sarah Z. Ficinski ◽  
Joseph Tohme ◽  
...  

AbstractBackground and AimsDiploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa and now planted worldwide are important for food security and the environment, often being planted in marginal lands. We aimed to characterize the nature of their genomes, the repetitive DNA, and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species.MethodsSome 362 forage grass accessions from international germplasm collections were studied, and ploidy determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis with in situ hybridization to chromosomes were used to identify chromosomes and genomes in Urochloa accessions belonging to the different agamic complexes.Key ResultsGenome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes, identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids.ConclusionsWe suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for U. brizantha, U. decumbens, and U. ruziziensis. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and will assist in measuring and conserving biodiversity in grasslands.


Sign in / Sign up

Export Citation Format

Share Document