Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes

Author(s):  
Qing-Ting Bu ◽  
Yue-Ping Li ◽  
Huang Xie ◽  
Ji-Feng Li ◽  
Zhong-Yuan Lv ◽  
...  
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Mohammad Simchi ◽  
Jason Riordon ◽  
Jae Bem You ◽  
Yihe Wang ◽  
Sa Xiao ◽  
...  

A 3D-structured sperm selection device is presented that achieves both high selectivity and high yield via thousands of parallel channels. The device significantly outperforms the best clinical practice by selecting ∼100 000 of higher-quality sperm.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 420
Author(s):  
Yi Ma ◽  
Liu Cui ◽  
Meng Wang ◽  
Qiuli Sun ◽  
Kaisheng Liu ◽  
...  

Bacterial ghosts (BGs) are empty cell envelopes possessing native extracellular structures without a cytoplasm and genetic materials. BGs are proposed to have significant prospects in biomedical research as vaccines or delivery carriers. The applications of BGs are often limited by inefficient bacterial lysis and a low yield. To solve these problems, we compared the lysis efficiency of the wild-type protein E (EW) from phage ΦX174 and the screened mutant protein E (EM) in the Escherichia coli BL21(DE3) strain. The results show that the lysis efficiency mediated by protein EM was improved. The implementation of the pLysS plasmid allowed nearly 100% lysis efficiency, with a high initial cell density as high as OD600 = 2.0, which was higher compared to the commonly used BG preparation method. The results of Western blot analysis and immunofluorescence indicate that the expression level of protein EM was significantly higher than that of the non-pLysS plasmid. High-quality BGs were observed by SEM and TEM. To verify the applicability of this method in other bacteria, the T7 RNA polymerase expression system was successfully constructed in Salmonella enterica (S. Enterica, SE). A pET vector containing EM and pLysS were introduced to obtain high-quality SE ghosts which could provide efficient protection for humans and animals. This paper describes a novel and commonly used method to produce high-quality BGs on a large scale for the first time.


2006 ◽  
Vol 9 (4) ◽  
pp. 501-506 ◽  
Author(s):  
Josine L. Min ◽  
Nico Lakenberg ◽  
Margreet Bakker-Verweij ◽  
Eka Suchiman ◽  
Dorret I. Boomsma ◽  
...  

AbstractIn this article, we present the genomic DNA yield and the microsatellite and single nucleotide polymorphism (SNP) genotyping success rates of genomic DNA extracted from a large number of mouth swab samples. In total, the median yield and quality was determined in 714 individuals and the success rates in 378,480 genotypings of 915 individuals. The median yield of genomic DNA per mouth swab was 4.1 μg (range 0.1–42.2 μg) and was not reduced when mouth swabs were stored for at least 21 months prior to extraction. A maximum of 20 mouth swabs is collected per participant. Mouth swab samples showed in, respectively, 89% for 390 microsatellites and 99% for 24 SNPs a genotyping success rate higher than 75%. A very low success rate of genotyping (0%–10%) was obtained for 3.2% of the 915 mouth swab samples using microsatellite markers. Only 0.005% of the mouth swab samples showed a geno-typing success rate lower than 75% (range 58%–71%) using SNPs. Our results show that mouth swabs can be easily collected, stored by our conditions for months prior to DNA extraction and result in high yield and high-quality DNA appropriate for genotyping with high success rate including whole genome searches using microsatellites or SNPs.


2021 ◽  
Author(s):  
Eder Antonio Castillo-Ruiz ◽  
Diana Fabiola Garcia-Gutierrez ◽  
Domingo Ixcóatl Garcia-Gutierrez

Abstract Based on the reported nucleation mechanisms for CsPbX3 and II-VI/IV-VI quantum dots, CsPbBr3 nanoparticles with a high reaction-yield, up to 393% mass-increment, were synthesized by the hot-injection method. The introduction of diphenylphosphine (DPP) as a reducing agent improved nanoparticle nucleation and growth, giving out evidence for Pb-seeding in CsPbBr3 nanoparticles formation. Additionally, a clear influence of the DPP in a CsPbBr3-Cs4PbBr6 incomplete phase transformation was observed, marked by the appearance of several PbBr2 nanoparticles, indicating the need for an improved ratio between the stabilizing agents and the precursors, due to the increased number of nucleation sites produced by the DPP. The resulting CsPbBr3 nanoparticles showed high quality, as they displayed 70%-90% photoluminescence quantum yield (PLQY), narrow size distribution with an average nanoparticle size of ~10 nm and the characteristic cubic morphology reported in previous works. This increment in CsPbBr3 nanoparticles’ reaction yield will contribute to making them a more attractive option for different optoelectronic applications.


2015 ◽  
Vol 1737 ◽  
Author(s):  
Mohammad M. Shahjamali ◽  
Michael Salvador ◽  
Negin Zaraee

ABSTRACTA facile, high-yield synthesis of edge gold-coated silver nanoprisms (GSNPs) with a gold nanoframe as thin as 1.7 nm and their comprehensive characterizations by using various spectroscopic and microscopic techniques is introduced. The GSNPs exhibit remarkably higher stability than silver nanoprisms (SNPs) and are therefore explored as effective optical antennae for light-harvesting applications. When embedded into a bulk heterojunctions film of P3HT:PCBM, plasmonic GSNPs with a localized surface plasmon resonance (LSPR) around 500 nm can effectively act as optical antennae to enhance light harvesting in the active layer. As a result, we measured up to 7-fold enhancement in the polaron generation yield through photoinduced absorption spectroscopy. Owing to the high stability and strong field enhancement, the presented GSNPs feature great potential as plasmonic probes for photovoltaic applications and LSPR sensing.


2014 ◽  
Vol 10 ◽  
pp. 1129-1134 ◽  
Author(s):  
Hannes Mikula ◽  
Julia Weber ◽  
Dennis Svatunek ◽  
Philipp Skrinjar ◽  
Gerhard Adam ◽  
...  

The development of a reliable procedure for the synthesis of the 16-glucoside and 16-sulfate of the resorcylic acid lactone (RAL) type compound zearalenone is presented. Different protective group strategies were considered and applied to enable the preparation of glucosides and sulfates that are difficult to access up to now. Acetyl andp-methoxybenzyl protection led to undesired results and were shown to be inappropriate. Finally, triisopropylsilyl-protected zearalenone was successfully used as intermediate for the first synthesis of the corresponding mycotoxin glucoside and sulfate that are highly valuable as reference materials for further studies in the emerging field of masked mycotoxins. Furthermore, high stability was observed for aryl sulfates prepared as tetrabutylammonium salts. Overall, these findings should be applicable for the synthesis of similar RAL type and natural product conjugates.


2009 ◽  
Vol 58 (5) ◽  
pp. 3193
Author(s):  
Zhang Yu-Ping ◽  
Zhang Hui-Yun ◽  
Zhong Kai ◽  
Wang Peng ◽  
Li Xi-Fu ◽  
...  

Author(s):  
Ming Toh ◽  
Kameshwari Chengan ◽  
Tanith Hanson ◽  
Paul S. Freemont ◽  
Simon J. Moore

2021 ◽  
Vol 899 ◽  
pp. 599-605
Author(s):  
Dara Slobodova ◽  
Raisa Gorshkova ◽  
Stanislav Pankov

An innovative method has been developed and an installation has been created for obtaining pectin polysaccharides in a dynamic mode under the influence of high pressure. The process of degradation of protopectin at various pH values pH of the hydrolyzing agent was studied using the example of sunflower baskets. It has been established that the use of the new method makes it possible to obtain high-quality target products with a high yield in gentle conditions. The possibility of combining the stages of hydrolysis-extraction and fractionation has been demonstrated, which makes it possible to control the process of obtaining pectic polysaccharides in the direction of obtaining substances with specified physicochemical parameters.


RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64395-64403 ◽  
Author(s):  
Pawan Kumar Srivastava ◽  
Premlata Yadav ◽  
Subhasis Ghosh

High yield production of high quality graphene is essential for its application in electronics, optoelectronics and energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document