A late Holocene paleoclimatic history of Lake Tanganyika, East Africa

2009 ◽  
Vol 72 (1) ◽  
pp. 47-56 ◽  
Author(s):  
J. Curt Stager ◽  
Christine Cocquyt ◽  
Raymonde Bonnefille ◽  
Constanze Weyhenmeyer ◽  
Nicole Bowerman

AbstractA nearshore core (LT03-05) from the north basin of Lake Tanganyika provides diatom, pollen, and sedimentary time series covering the last ca. 3800 yr at 15–36 yr resolution. A chronology supported by 21 AMS dates on terrestrial and lacustrine materials allows us to account for ancient carbon effects on 14C ages and to propose refinements of the region's climatic history. Conditions drier than those of today were followed after ca. 3.30 ka by an overall wetting trend. Several century-scale climate variations were superimposed upon that trend, with exceptionally rainy conditions occurring 1.70–1.40 ka, 1.15–0.90 ka, 0.70–0.55 ka, and 0.35–0.20 ka. Around 0.55–0.35 ka, during the Spörer sunspot minimum, drier conditions developed in the northern Tanganyika basin while more humid conditions were registered at Lakes Victoria and Naivasha. This indicates significant variability in the nature and distribution of near-equatorial rainfall anomalies during much of the Little Ice Age.

2010 ◽  
Vol 6 (5) ◽  
pp. 1655-1683 ◽  
Author(s):  
C. Martín-Puertas ◽  
F. Jiménez-Espejo ◽  
F. Martínez-Ruiz ◽  
V. Nieto-Moreno ◽  
M. Rodrigo ◽  
...  

Abstract. A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) paleoclimate information using geochemical proxies provides a high resolution reconstruction of climate variability and human influence in southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. Drier stages occurred prior to 2.7 cal ka BP, well-correlated with the global aridity crisis of the third-millennium BC, and during the Medieval Warm Period (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP and after the Medieval Warm Period and the onset of the Little Ice Age. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity that the period before. Additionally, Pb anomalies in sediments at the end of Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The evolution of the climate in the study area during the Late Holocene confirms the see-saw pattern previously shown between eastern and western Mediterranean regions and suggests a higher influence of the North Atlantic dynamics in the western Mediterranean.


Geografie ◽  
2008 ◽  
Vol 113 (4) ◽  
pp. 338-350
Author(s):  
Heinz Wanner ◽  
Jonathan Butikofer

During the Holocene (last 12,000 years) nine cold relapses were observed mainly in the North Atlantic Ocean area and its surroundings. Based on the pioneering studies by Bond et al. (1997, 2001) these events are called Bond Cycles and thought to be the Holocene equivalents of the Pleistocene Dansgaard-Oeschger cycles. The first event was the Younger Dryas (~12,000 BP; Broecker 2006), the last one was the Little Ice Age (AD 1350-1860; Grove 1988). A number of trigger mechanisms is discussed (see Table 1), but a theory for the Bond Cycles does not exist. Based on spectral analyses of both, forcing factors and climatological time series, we argue that one single process did likely not cause the Holocene cooling events. It is conceivable that the early Holocene coolings were triggered by meltwater pulses. However, the late Holocene events (e.g., the Little Ice Age) were rather caused by a combination of different trigger mechanisms. In every case it has to be taken in mind that natural variability was also playing a decisive role.


2015 ◽  
Vol 63 ◽  
pp. 17-28
Author(s):  
Lars B. Clemmensen ◽  
Aslaug C. Glad ◽  
Kristian W.T. Hansen ◽  
Andrew S. Murray

Late Holocene coastal dune successions in north-western Europe contain evidence of episodic aeolian sand movement in the recent past. If previous periods of increased sand movement can be dated sufficiently precisely and placed in a correct cultural and geomorphological context, they may add to our understanding of storminess variation and climate change in the North Atlantic during the later part of the Holocene.


The Holocene ◽  
2010 ◽  
Vol 20 (6) ◽  
pp. 849-861 ◽  
Author(s):  
Catalina González ◽  
Ligia Estela Urrego ◽  
José Ignacio Martínez ◽  
Jaime Polanía ◽  
Yusuke Yokoyama

2017 ◽  
Vol 54 (11) ◽  
pp. 1153-1164 ◽  
Author(s):  
B.H. Luckman ◽  
M.H. Masiokas ◽  
K. Nicolussi

As glaciers in the Canadian Rockies recede, glacier forefields continue to yield subfossil wood from sites overridden by these glaciers during the Holocene. Robson Glacier in British Columbia formerly extended below tree line, and recession over the last century has progressively revealed a number of buried forest sites that are providing one of the more complete records of glacier history in the Canadian Rockies during the latter half of the Holocene. The glacier was advancing ca. 5.5 km upvalley of the Little Ice Age terminus ca. 5.26 cal ka BP, at sites ca. 2 km upvalley ca. 4.02 cal ka BP and ca. 3.55 cal ka BP, and 0.5–1 km upvalley between 1140 and 1350 A.D. There is also limited evidence based on detrital wood of an additional period of glacier advance ca. 3.24 cal ka BP. This record is more similar to glacier histories further west in British Columbia than elsewhere in the Rockies and provides the first evidence for a post-Hypsithermal glacier advance at ca. 5.26 cal ka BP in the Rockies. The utilization of the wiggle-matching approach using multiple 14C dates from sample locations determined by dendrochronological analyses enabled the recognition of 14C outliers and an increase in the precision and accuracy of the dating of glacier advances.


2015 ◽  
Vol 11 (9) ◽  
pp. 1239-1248 ◽  
Author(s):  
A. Rodríguez-Ramírez ◽  
M. Caballero ◽  
P. Roy ◽  
B. Ortega ◽  
G. Vázquez-Castro ◽  
...  

Abstract. We present results of analysis of biological (diatoms and ostracodes) and non-biological (Ti, Ca / Ti, total inorganic carbon, magnetic susceptibility) variables from an 8.8 m long, high-resolution (~ 20 yr sample−1) laminated sediment sequence from Lake Santa María del Oro (SMO), western Mexico. This lake lies at a sensitive location between the dry climates of northern Mexico, under the influence of the North Pacific subtropical high-pressure cell and the moister climates of central Mexico, under the influence of the seasonal migration of the intertropical convergence zone and the North American monsoon (NAM). The sequence covers the last 2000 years and provides evidence of two periods of human impact in the catchment, shown by increases in the diatom Achnanthidium minutissimum. The first from AD 100 to 400 (Early Classic) is related to the shaft and chamber tombs cultural tradition in western Mexico, and the second is related to Post-Classic occupation from AD 1100 to 1300. Both periods correspond to relatively wet conditions. Three dry intervals are identified from increased carbonate and the presence of ostracodes and aerophilous Eolimna minima. The first, from AD 500 to 1000 (most intense during the late Classic, from AD 600 to 800), correlates with the end of the shaft and chamber tradition in western Mexico after ca. AD 600. This late Classic dry period is the most important climatic signal in the Mesoamerican region during the last 2000 years, and has been recorded at several sites from Yucatan to the Pacific coast. In the Yucatan area, this dry interval has been related with the demise of the Maya culture at the end of the Classic (AD 850 to 950). The last two dry events (AD 1400 to 1550 and 1690 to 1770) correspond with the onset of, and the late, Little Ice Age, and follow largely the Spörer and Maunder minima in solar radiation. The first of these intervals (AD 1400 to 1550) shows the most intense signal over western Mexico; however this pattern is different at other sites. Dry/wet intervals in the SMO record are related with lower/higher intensity of the NAM over this region, respectively.


2012 ◽  
Vol 8 (3) ◽  
pp. 1687-1720 ◽  
Author(s):  
J. Fohlmeister ◽  
A. Schröder-Ritzrau ◽  
D. Scholz ◽  
C. Spötl ◽  
D. F. C. Riechelmann ◽  
...  

Abstract. Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a new record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, Western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high resolution records of δ18O, δ13C values and Mg/Ca ratios. We attribute changes in the Mg/Ca ratio to variations in the meteoric precipitation. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 9 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 to 0.2 ka. The proxy signals in our stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the Thermohaline Circulation.


2017 ◽  
Vol 21 (4) ◽  
pp. 190-196
Author(s):  
Jan Czempiński ◽  
Maciej Dąbski

AbstractThe aim of this article is to show the results of the lichenometrical and Schmidt hammer measurements performed in 2015 during the AMADEE-15 Mars Mission Simulation in the Ötztal Alps in order to test the capabilities of analogue astronauts and collect information on the geomorphic history of the study area since the Little Ice Age (LIA). The results obtained differ significantly from our expectations, which we attribute to differences in the field experience of participants and the astronauts’ technical limitations in terms of mobility. However, the experiments proved that these methods are within the range of the astronauts’ capabilities. Environmental factors, such as i) varied petrography, ii) varied number of thalli in test polygons, and iii) differences in topoclimatic conditions between the LIA moraine and the glacier front, further inhibited simple interpretation. The LIA maximum of the Kaunertal glacier occurred in AD 1850, and relative stabilization of the frontal part of the rock glacier occurred in AD 1711.


Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Florian Adolphi ◽  
Jürg Beer ◽  
Nicolas Brehm ◽  
...  

<p>The Younger Dryas stadial (YD) was a return to glacial-like conditions in the North Atlantic region that interrupted deglacial warming around 12900 cal BP (before 1950 AD). Terrestrial and marine records suggest this event was initiated by the interruption of deep-water formation arising from North American freshwater runoff, but the causes of the millennia-long duration remain unclear. To investigate the solar activity, a possible YD driver, we exploit the cosmic production signals of tree-ring radiocarbon (<sup>14</sup>C) and ice-core beryllium-10 (<sup>10</sup>Be). Here we present the highest temporally resolved dataset of <sup>14</sup>C measurements (n = 1558) derived from European tree rings that have been accurately extended back to 14226 cal BP (±8, 2-σ), allowing precise alignment of ice-core records across this period. We identify a substantial increase in <sup>14</sup>C and <sup>10</sup>Be production starting at 12780 cal BP is comparable in magnitude to the historic Little Ice Age, being a clear sign of grand solar minima. We hypothesize the timing of the grand solar minima provides a significant amplifying factor leading to the harsh sustained glacial-like conditions seen in the YD.</p>


2001 ◽  
Vol 38 (8) ◽  
pp. 1141-1155 ◽  
Author(s):  
G D Osborn ◽  
B J Robinson ◽  
B H Luckman

The Holocene and late glacial history of fluctuations of Stutfield Glacier are reconstructed using moraine stratigraphy, tephrochronology, and dendroglaciology. Stratigraphic sections in the lateral moraines contain tills from at least three glacier advances separated by volcanic tephras and paleosols. The oldest, pre-Mazama till is correlated with the Crowfoot Advance (dated elsewhere to be Younger Dryas equivalent). A Neoglacial till is found between the Mazama tephra and a paleosol developed on the Bridge River tephra. A log dating 2400 BP from the upper part of this till indicates that this glacier advance, correlated with the Peyto Advance, culminated shortly before deposition of the Bridge River tephra. Radiocarbon and tree-ring dates from overridden trees exposed in moraine sections indicate that the initial Cavell (Little Ice Age (LIA)) Advance overrode this paleosol and trees after A.D. 1271. Three subsequent phases of the Cavell Advance were dated by dendrochronology. The maximum glacier extent occurred in the mid-18th century, predating 1743 on the southern lateral, although ice still occupied and tilted a tree on the north lateral in 1758. Subsequent glacier advances occurred ca. 1800–1816 and in the late 19th century. The relative extent of the LIA advances at Stutfield differs from that of other major eastward flowing outlets of the Columbia Icefield, which have maxima in the mid–late 19th century. This is the first study from the Canadian Rockies to demonstrate that the large, morphologically simple, lateral moraines defining the LIA glacier limits are actually composite features, built up progressively (but discontinuously) over the Holocene and contain evidence of multiple Holocene- and Crowfoot-age glacier advances.


Sign in / Sign up

Export Citation Format

Share Document