Deglaciation, basin formation and post-glacial climate change from a regional network of sediment core sites in Ohio and eastern Indiana

2011 ◽  
Vol 76 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Katherine C. Glover ◽  
Thomas V. Lowell ◽  
Gregory C. Wiles ◽  
Donald Pair ◽  
Patrick Applegate ◽  
...  

AbstractMany paleoclimate and landscape change studies in the American Midwest have focused on the Late Glacial and early Holocene time periods (~ 16–11 ka), but little work has addressed landscape change in this area between the Last Glacial Maximum and the Late Glacial (~ 22–16 ka). Sediment cores were collected from 29 new lake and bog sites in Ohio and Indiana to address this gap. The basal radiocarbon dates from these cores show that initial ice retreat from the maximal last-glacial ice extent occurred by 22 ka, and numerous sites that are ~ 100 km inside this limit were exposed by 18.9 ka. Post-glacial environmental changes were identified as stratigraphic or biologic changes in select cores. The strongest signal occurs between 18.5 and 14.6 ka. These Midwestern events correspond with evidence to the northeast, suggesting that initial deglaciation of the ice sheet, and ensuing environmental changes, were episodic and rapid. Significantly, these changes predate the onset of the Bølling postglacial warming (14.8 ka) as recorded by the Greenland ice cores. Thus, deglaciation and landscape change around the southern margins of the Laurentide Ice Sheet happened ~ 7 ka before postglacial changes were felt in central Greenland.

2016 ◽  
Vol 10 (2) ◽  
pp. 639-664 ◽  
Author(s):  
Julien Seguinot ◽  
Irina Rogozhina ◽  
Arjen P. Stroeven ◽  
Martin Margold ◽  
Johan Kleman

Abstract. After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2–56.9 ka) and 2 (23.2–16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).


2006 ◽  
Vol 52 (176) ◽  
pp. 149-158 ◽  
Author(s):  
Frank Wilschut ◽  
Richard Bintanja ◽  
Roderik S.W. Van De Wal

AbstractA widely used method for investigating palaeotemperatures is to analyze local proxy records (e.g. ice cores or deep-sea sediment cores). The interpretation of these records is often not straightforward, and global or hemispheric means cannot be deduced from local estimates because of large spatial variability. Using a different approach, temperature changes over the last glacial cycle can be estimated from sea-level observations by applying an inverse method to an ice-sheet model. In order to understand the underlying physical mechanisms, we used a 1-D ice-sheet model and a 3-D coupled thermodynamic ice-sheet–ice-shelf–bedrock model to investigate the importance of several physical processes for the inverse temperature reconstructions. Results show that (i) temperature reconstructions are sensitive to the employed formulation of mass balance, (ii) excluding thermodynamics in the ice sheet leads to a smaller temperature amplitude in the reconstruction and (iii) hysteresis in the non-linear relation between sea level and temperature occurs as a consequence of ice redistribution in the process of merging and separation of ice sheets. The ice redistribution does not occur if the geometry does not support the formation of a relatively flat dome, which tends to be preserved in warming conditions.


2021 ◽  
Author(s):  
Vårin Trælvik Eilertsen ◽  
Rydningen Tom Arne ◽  
Matthias Forwick ◽  
Monica Winsborrow ◽  
Jan Sverre Laberg

<p>The Eurasian Ice Sheet Complex was the world’s third largest ice mass during the last glacial maximum (LGM), and included the British, Fennoscandian and Svalbard–Barents Sea ice sheets. Of these three, the mostly marine-based Svalbard-Barents Sea Ice Sheet (SBIS) is the least well constrained in terms of ice sheet dynamics and deglacial retreat patterns. Improving the understanding of the behavior and decay of this marine paleo-ice sheet can provide knowledge that is relevant to understanding the future evolution of the marine terminating ice margins in Greenland and Antarctica, which are today undergoing rapid retreat and thinning.</p><p>We present high-resolution TOPAS sub-bottom profiler data and multi-proxy analyses of four sediment gravity cores (1.15 to 5.05 m long) retrieved from water depths of c. 250-550 m in a trough south of Kvitøya, NW Barents Sea. The data were collected during the Nansen Legacy (https:/arvenetternansen.com/) Paleo-cruise in 2018, with the aim of reconstructing the patterns and timing of deglaciation of the SBIS and postglacial environmental changes in the northern Barents Sea. The data show a succession of up to 10 m high and 400 m wide ridges, interpreted to be recessional push-moraines, representing small still-stands or re-advances of the ice front during its retreat in southwesterly direction. An up to 40 m high and 20 km long sedimentary wedge in the central and western part of the study area buries some of these moraines. This wedge is interpreted to be a grounding zone wedge representing a major still-stand or re-advance during the deglaciation.</p><p>The gravity cores are located distal to, on the distal slope and on top of the grounding zone wedge. A muddy diamict defines the lowermost unit in each core. It is interpreted to be primarily subglacial till. This till is covered by laminated mud, interpreted to represent sedimentation from meltwater plumes that emanated from the nearby ice margin. Massive marine mud containing scattered clasts (the clasts are interpreted to be ice rafted debris) define the uppermost unit in all cores. This is suggested to represent deposition from suspension settling and ice rafting in a glacier-distal environment at the end of the last glacial, as well as during modern conditions.</p><p>Radiocarbon dates (submitted for dating) will provide a minimum age for the formation of the grounding zone wedge and the recessional moraines in front of it. This will improve the chronology on the deglacial events forming these deposits and landforms. Together with detailed multi-proxy analyses of the sedimentary units, this will also provide new knowledge about the development from glacial conditions to a glacier-proximal and –distal, and an open marine environment from the last glacial to the present.</p>


2015 ◽  
Vol 9 (4) ◽  
pp. 4147-4203 ◽  
Author(s):  
J. Seguinot ◽  
I. Rogozhina ◽  
A. P. Stroeven ◽  
M. Margold ◽  
J. Kleman

Abstract. Despite more than a century of geological observations, the Cordilleran ice sheet of North America remains poorly understood in terms of its former extent, volume and dynamics. Although geomorphological evidence is abundant, its complexity is such that whole ice-sheet reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (61.9–56.5 ka) and 2 (23.2–16.8 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.6–6.2 ka).


2002 ◽  
Vol 35 ◽  
pp. 145-149 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
David A. Fisher ◽  
Ian Clark ◽  
Denis Lacelle

AbstractBarnes Ice Cap, Baffin Island, Canada, is a remnant of the Laurentide ice sheet that separated from it about 8500 years ago. Owing to recession of the ice cap during the Holocene, Pleistocene-age ice is now exposed along the margin in a distinctive bubble-rich white band. δ18O variations across the white ice resemble those in Canadian Arctic ice cores, suggesting that Barnes Ice Cap preserves a climatic record through the last glacial period, possibly reaching back into the previous (Sangamon) interglacial. the δ18O shift at the Wisconsin–Holocene transition (15‰) exceeds that in other Canadian and Greenland records and cannot be explained solely in climatic terms. A steady-state model reconstruction of the Laurentide ice sheet during the Last Glacial Maximum suggests that Late-glacial strata in Barnes Ice Cap originated high up (>2400ma.s.l.) and far “inland” on the ice sheet, along a ridge that extended between the ancestral Foxe and Keewatin ice domes.


1998 ◽  
Vol 27 ◽  
pp. 275-280 ◽  
Author(s):  
Akira Nishimura ◽  
Toru Nakasone ◽  
Chikara Hiramatsu ◽  
Manabu Tanahashi

Based on sedimenlological and micropaleontological work on three sediment cores collected at about 167° Ε in the western Ross Sea, Antarctica, and accelerator mass spectrometer l4C ages of organic carbon, we have reconstructed environmental changes in the area during the late Quaternary. Since 38 ka BP at latest, this area was a marine environment with low productivity. A grounded ice sheet advanced and loaded the sediments before about 30-25 ka BP. After 25 ka BP, the southernmost site (76°46'S) was covered by floating ice (shelf ice), preventing deposition of coarse terrigenous materials and maintaining a supply of diatom tests and organic carbon until 20 ka BP. The northernmost site (74°33'S) was in a marine environment with a moderate productivity influenced by shelf ice/ice sheet after about 20 ka BP. Since about 10 ka BP, a sedimentary environment similar to the present-day one has prevailed over this area.


2012 ◽  
Vol 8 (6) ◽  
pp. 1997-2017 ◽  
Author(s):  
J. Zumaque ◽  
F. Eynaud ◽  
S. Zaragosi ◽  
F. Marret ◽  
K. M. Matsuzaki ◽  
...  

Abstract. The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60–30 cal ka BP) provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth), retrieved during the MD114-IMAGES (International Marine Global Change Study) cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South) during the last glacial and thus probably responded to the MIS3 pulsed climatic changes. We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm) lithic fraction (grain concentration) and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst – e.g. dinocyst – assemblages). Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato). Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events), the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka, reconstructed paleohydrological conditions evidence strong shifts in SST: this increasing variability seems consistent with the hypothesised coalescence of the British and Fennoscandian ice sheets at that time, which could have directly influenced sea-surface environments in the vicinity of core MD99-2281.


2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>


1996 ◽  
Vol 33 (11) ◽  
pp. 1499-1510 ◽  
Author(s):  
William F. Manley

New georaorphic, sedimentologic, and chronologic data are used to reconstruct late Quaternary ice-sheet flow patterns, deglaciation, and isostatic uplift along the largest marine trough connecting the Laurentide Ice Sheet with the North Atlantic Ocean. The Lake Harbour region was targeted for study given its potential to record flow from several ice-dispersal centers. Striations and sediment provenance indicators define flow patterns. Thirty-four radiocarbon dates constrain a chronology of events. Centuries or millennia(?) before deglaciation, a southeast-flowing ice stream impinged on southernmost Big Island, as recorded by a single striation site and delimited in extent by geomorphic evidence of cold-based ice. During the Cockburn Substagc (9000–8000 BP), the region was scoured by southward to southwestward flow from an ice cap on Meta Incognita Peninsula, as recorded by 60 striation sites along 200 km of coastline. Carbonate erratics are uncommon in till above the marine limit. Where present, they suggest that southward flow reworked older drift. At about 8200 BP, the area was dcglaciated, and the marine limit was established at elevations of 67–141 m above high tide. Iceberg calving and sediment discharge from an ice margin in Ungava Bay, Hudson Bay, or Foxe Basin then blanketed the area with limestone-rich glaciomarinc sediment. Afterward, the region experienced slow but sustained emergence. The data revise the maximum lateral extent of a Late Wisconsinan ice stream in Hudson Strait and emphasize the extent of a late-glacial ice cap on western Meta Incognita Peninsula.


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 933-941 ◽  
Author(s):  
Irina P Panyushkina ◽  
Steven W Leavitt ◽  
Alex Wiedenhoeft ◽  
Sarah Noggle ◽  
Brandon Curry ◽  
...  

The abrupt millennial-scale changes associated with the Younger Dryas (YD) event (“chronozone”) near the dawn of the Holocene are at least hemispheric, if not global, in extent. Evidence for the YD cold excursion is abundant in Europe but fairly meager in central North America. We are engaged in an investigation of high-resolution environmental changes in mid-North America over several millennia (about 10,000 to 14,000 BP) during the Late Glacial–Early Holocene transition, including the YD interval. Several sites containing logs or stumps have been identified and we are in the process of initial sampling or re-sampling them for this project. Here, we report on a site in central Illinois containing a deposit of logs initially thought to be of YD age preserved in alluvial sands. The assemblage of wood represents hardwood (angiosperm) trees, and the ring-width characteristics are favorable to developing formal tree-ring chronologies. However, 4 new radiocarbon dates indicate deposition of wood may have taken place over at least 8000 14C yr (6000–14,000 BP). This complicates the effort to develop a single floating chronology of several hundred years at this site, but it may provide wood from a restricted region over a long period of time from which to develop a sequence of floating chronologies, the timing of deposition and preservation of which could be related to paleoclimatic events and conditions.


Sign in / Sign up

Export Citation Format

Share Document