Evaluation of the roles that alkyl hydroperoxide reductase and Ohr play in organic peroxide-induced gene expression and protection against organic peroxides in Xanthomonas campestris

2002 ◽  
Vol 299 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Paiboon Vattanaviboon ◽  
Wirongrong Whangsuk ◽  
Warunya Panmanee ◽  
Chananat Klomsiri ◽  
Saovanee Dharmsthiti ◽  
...  
2003 ◽  
Vol 185 (5) ◽  
pp. 1734-1738 ◽  
Author(s):  
Paiboon Vattanaviboon ◽  
Wirongrong Whangsuk ◽  
Skorn Mongkolsuk

ABSTRACT We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyRXp ). The oxyRR2 Xp mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H2O2 and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2 Xp mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2 Xp mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyRXp mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris.


2014 ◽  
Vol 80 (23) ◽  
pp. 7398-7404 ◽  
Author(s):  
Chun-Hui Chung ◽  
Tsung-yong Ma ◽  
Shin-yuan Fen ◽  
Hin-chung Wong

ABSTRACTAlkyl hydroperoxide reductase subunit C gene (ahpC) functions were characterized inVibrio parahaemolyticus, a commonly occurring marine food-borne enteropathogenic bacterium. TwoahpCgenes,ahpC1(VPA1683) andahpC2(VP0580), encoded putative two-cysteine peroxiredoxins, which are highly similar to the homologous proteins ofVibrio vulnificus. The responses of deletion mutants ofahpCgenes to various peroxides were compared with and without gene complementation and at different incubation temperatures. The growth of theahpC1mutant andahpC1 ahpC2double mutant in liquid medium was significantly inhibited by organic peroxides, cumene hydroperoxide andtert-butyl hydroperoxide. However, inhibition was higher at 12°C and 22°C than at 37°C. Inhibiting effects were prevented by the complementaryahpC1gene. Inconsistent detoxification of H2O2byahpCgenes was demonstrated in an agar medium but not in a liquid medium. Complementation with anahpC2gene partially restored the peroxidase effect in the doubleahpC1 ahpC2mutant at 22°C. This investigation reveals thatahpC1is the chief peroxidase gene that acts against organic peroxides inV. parahaemolyticusand that the function of theahpCgenes is influenced by incubation temperature.


2021 ◽  
Author(s):  
Margot Raffeiner ◽  
Suayib Üstün ◽  
Tiziana Guerra ◽  
Daniela Spinti ◽  
Maria Fitzner ◽  
...  

A critical component of plant immunity against invading pathogens is the rapid transcriptional reprogramming of the attacked cell to minimize virulence. Many adapted plant bacterial pathogens use type III effector (T3E) proteins to interfere with plant defense responses, including the induction of immunity genes. The elucidation of effector function is essential to understanding bacterial pathogenesis. Here, we show that XopS, a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits the proteasomal degradation of the transcriptional regulator of defense gene expression WRKY40. Virus-induced gene silencing of WRKY40 in pepper enhanced plant tolerance towards Xcv infection, indicating it represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets including salicylic acid (SA)-responsive genes and the jasmonic acid (JA) signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis or Nicotiana benthamiana prevented stomatal closure in response to bacteria and biotic elicitors in a WRKY40 dependent manner. This suggests that XopS interferes with preinvasion as well as with apoplastic defense by manipulating WRKY40 stability and gene expression eventually altering phytohormone crosstalk to promote pathogen proliferation.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1121
Author(s):  
Mehede Hassan Rubel ◽  
Md. Abuyusuf ◽  
Ujjal Kumar Nath ◽  
Arif Hasan Khan Robin ◽  
Hee Jeong Jung ◽  
...  

Cabbage (Brassica oleracea var. capitata) is an economically important crop in the family Brassicaceae. Black rot disease is a top ranked cabbage disease, which is caused by Xanthomonas campestris pv. campestris (Xcc) and may reduce 50% crop loss. Therefore, we need a clear understanding of black rot disease resistance for sustainable disease management. The secondary metabolites, like Glucosinolate (GSL) presents in Brassica species, which plays a potential role in the defense mechanism against pathogens. However, there is little known about GSL-regulated resistance mechanisms and GSL biosynthesis and the breakdown related gene expression after black rot disease infection in cabbage. In this study, relative expression of 43 biosynthetic and breakdown related GSLs were estimated in the black rot resistant and susceptible cabbage lines after Xcc inoculation. Ten different types of GSL from both aliphatic and indolic groups were identified in the contrasting cabbage lines by HPLC analysis, which included six aliphatic and four indolic compounds. In the resistant line, nine genes (MYB122-Bol026204, MYB34-Bol017062, AOP2-Bo9g006240, ST5c-Bol030757, CYP81F1-Bol017376, CYP81F2-Bol012237, CYP81F4-Bol032712, CYP81F4-Bol032714 and PEN2-Bol030092) showed consistent expression patterns. Pearson’s correlation coefficient showed positive and significant association between aliphatic GSL compounds and expression values of ST5c-Bol030757 and AOP2-Bo9g006240 genes as well as between indolic GSL compounds and the expression of MYB34-Bol017062, MYB122-Bol026204, CYP81F2-Bol012237, CYP81F4-Bol032712 and CYP81F4-Bol032714 genes. This study helps in understanding the role of GSL biosynthesis and breakdown related genes for resistance against black rot pathogen in cabbage, which could be further confirmed through functional characterization either by overexpression or knock-out mutation.


Sign in / Sign up

Export Citation Format

Share Document