Room temperature Coulomb staircase on pure and uniform surface-capped gold nanoparticles

1998 ◽  
Vol 287 (1-2) ◽  
pp. 47-52 ◽  
Author(s):  
M.Y. Han ◽  
L. Zhou ◽  
C.H. Quek ◽  
S.F.Y. Li ◽  
W. Huang
MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Braja Gopal Bag ◽  
Shib Shankar Dash ◽  
Anup Mandal

The antioxidant efficacy of the rhizome extract of Polygonatum cirrhifolium (Mahameda) has been studied against a stable 2, 2-diphenylpicrylhydrazyl (DPPH) radical at room temperature. The chemical constituents present in the rhizome extract have been utilized for the one step synthesis of stable gold nanoparticles at room temperature under very mild conditions.


2020 ◽  
Vol 20 (6) ◽  
pp. 3356-3360
Author(s):  
Hao Yong Yin ◽  
Yi Fan Zheng ◽  
Ling Wang

We report the formation of gold nanoparticles on indium tin oxide conducting glass (ITO) surface via electrodeposition method at room temperature. The prepared nano-Au electrodes has been fabricated for sensitive detection of Pb2+, and showed highly selective response toward Pb2+. The electrochemical detection of Pb2+ were determined by differential pulse stripping voltammetric (DPSV). The nano-Au electrochemical sensor could detect Pb2+ from 0.5 to 10 μM with detection limits of 0.06 μM (S/N= 3) and sensitivity of 0.27996 mA μM−1. The proposed sensor is simple, reliable, sensitive, selective, and low-cost, thus holds potential for practical application in Pb2+ detection.


Sign in / Sign up

Export Citation Format

Share Document