540 Epithelial Reconstitution Reveals Regulation of Differentiation and Cell Fate Decisions Through a Novel Interplay Between the Notch Signaling and Essential Cancer Genes in Esophageal Carcinogenesis

2009 ◽  
Vol 136 (5) ◽  
pp. A-83
Author(s):  
Shinya Ohashi ◽  
Momo Nakagawa ◽  
Mitsuteru Natsuizaka ◽  
Douglas B. Stairs ◽  
Katharine D. Grugan ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Virginia Guarani ◽  
Franck Dequiedt ◽  
Andreas M Zeiher ◽  
Stefanie Dimmeler ◽  
Michael Potente

The Notch signaling pathway is a versatile regulator of cell fate decisions and plays an essential role for embryonic and postnatal vascular development. As only modest differences in Notch pathway activity suffice to determine dramatic differences in blood vessel development, this pathway is tightly regulated by a variety of molecular mechanisms. Reversible acetylation has emerged as an important post-translational modification of several non-histone proteins, which are targeted by histone deacetylases (HDACs). Here, we report that specifically the Notch1 intracellular domain (NICD) is itself an acetylated protein and that its acetylation level is tightly regulated by the SIRT1 deacetylase, which we have previously identified as a key regulator of endothelial angiogenic functions during vascular growth. Coexpression of NICD with histone acetyltransferases such as p300 or PCAF induced a dose- and time-dependent acetylation of NICD. Blocking HDAC activity using the class III HDAC inhibitor nicotinamid (NAM), but not the class I/II HDAC inhibior trichostatin A, resulted in a significant increase of NICD acetylation suggesting that NICD is targetd by class III HDACs for deacetylation. Among the class III HDACs with deacetylase activity (SIRT1, 2, 3, 5), knock down of specifically SIRT1 resulted in enhanced acetylation of NICD. Moreover, wild type SIRT1, but not a catalytically inactive mutant catalyzed the deacetylation of NICD in a nicotinamid-dependent manner. SIRT1, but SIRT2, SIRT3 or SIRT5, associated with NICD through its catalytic domain demonstrating that SIRT1 is a direct NICD deacetylase. Enhancing NICD acetylation by either overexpression of p300 or inhibition of SIRT1 activity using NAM or RNAi-mediated knock down resulted in enhanced NICD protein stability by blocking its ubiquitin-mediated degradation. Consistent with these results, loss of SIRT1 amplified Notch target gene expression in endothelial cells in response to NICD overexpression or treatment with the Notch ligand Dll4. In summary, our results identify reversible acetylation of NICD as a novel molecular mechanism to control Notch signaling and suggest that deacetylation of NICD by SIRT1 plays a key role in the dynamic regulation of Notch signaling in endothelial cells.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3865-3876
Author(s):  
M.S. Rones ◽  
K.A. McLaughlin ◽  
M. Raffin ◽  
M. Mercola

Notch signaling mediates numerous developmental cell fate decisions in organisms ranging from flies to humans, resulting in the generation of multiple cell types from equipotential precursors. In this paper, we present evidence that activation of Notch by its ligand Serrate apportions myogenic and non-myogenic cell fates within the early Xenopus heart field. The crescent-shaped field of heart mesoderm is specified initially as cardiomyogenic. While the ventral region of the field forms the myocardial tube, the dorsolateral portions lose myogenic potency and form the dorsal mesocardium and pericardial roof (Raffin, M., Leong, L. M., Rones, M. S., Sparrow, D., Mohun, T. and Mercola, M. (2000) Dev. Biol., 218, 326–340). The local interactions that establish or maintain the distinct myocardial and non-myocardial domains have never been described. Here we show that Xenopus Notch1 (Xotch) and Serrate1 are expressed in overlapping patterns in the early heart field. Conditional activation or inhibition of the Notch pathway with inducible dominant negative or active forms of the RBP-J/Suppressor of Hairless [Su(H)] transcription factor indicated that activation of Notch feeds back on Serrate1 gene expression to localize transcripts more dorsolaterally than those of Notch1, with overlap in the region of the developing mesocardium. Moreover, Notch pathway activation decreased myocardial gene expression and increased expression of a marker of the mesocardium and pericardial roof, whereas inhibition of Notch signaling had the opposite effect. Activation or inhibition of Notch also regulated contribution of individual cells to the myocardium. Importantly, expression of Nkx2. 5 and Gata4 remained largely unaffected, indicating that Notch signaling functions downstream of heart field specification. We conclude that Notch signaling through Su(H) suppresses cardiomyogenesis and that this activity is essential for the correct specification of myocardial and non-myocardial cell fates.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2282-2297 ◽  
Author(s):  
Sandra Haider ◽  
Magdalena Gamperl ◽  
Thomas R Burkard ◽  
Victoria Kunihs ◽  
Ulrich Kaindl ◽  
...  

Abstract The human endometrium is the inner lining of the uterus consisting of stromal and epithelial (secretory and ciliated) cells. It undergoes a hormonally regulated monthly cycle of growth, differentiation, and desquamation. However, how these cyclic changes control the balance between secretory and ciliated cells remains unclear. Here, we established endometrial organoids to investigate the estrogen (E2)-driven control of cell fate decisions in human endometrial epithelium. We demonstrate that they preserve the structure, expression patterns, secretory properties, and E2 responsiveness of their tissue of origin. Next, we show that the induction of ciliated cells is orchestrated by the coordinated action of E2 and NOTCH signaling. Although E2 is the primary driver, inhibition of NOTCH signaling provides a permissive environment. However, inhibition of NOTCH alone is not sufficient to trigger ciliogenesis. Overall, we provide insights into endometrial biology and propose endometrial organoids as a robust and powerful model for studying ciliogenesis in vitro.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1879 ◽  
Author(s):  
Christian T. Meisel ◽  
Cristina Porcheri ◽  
Thimios A. Mitsiadis

The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.


2008 ◽  
Vol 182 (6) ◽  
pp. 1113-1125 ◽  
Author(s):  
An-Chi Tien ◽  
Akhila Rajan ◽  
Karen L. Schulze ◽  
Hyung Don Ryoo ◽  
Melih Acar ◽  
...  

Notch-mediated cell–cell communication regulates numerous developmental processes and cell fate decisions. Through a mosaic genetic screen in Drosophila melanogaster, we identified a role in Notch signaling for a conserved thiol oxidase, endoplasmic reticulum (ER) oxidoreductin 1–like (Ero1L). Although Ero1L is reported to play a widespread role in protein folding in yeast, in flies Ero1L mutant clones show specific defects in lateral inhibition and inductive signaling, two characteristic processes regulated by Notch signaling. Ero1L mutant cells accumulate high levels of Notch protein in the ER and induce the unfolded protein response, suggesting that Notch is misfolded and fails to be exported from the ER. Biochemical assays demonstrate that Ero1L is required for formation of disulfide bonds of three Lin12-Notch repeats (LNRs) present in the extracellular domain of Notch. These LNRs are unique to the Notch family of proteins. Therefore, we have uncovered an unexpected requirement for Ero1L in the maturation of the Notch receptor.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1370-1370
Author(s):  
Melanie G Cornejo ◽  
Thomas Mercher ◽  
Joseph D. Growney ◽  
Jonathan Jesneck ◽  
Ivan Maillard ◽  
...  

Abstract The Notch signaling pathway is involved in a broad spectrum of cell fate decisions during development, and in the hematopoietic system, it is known to favor T cell- vs B cell lineage commitment. However, its role in myeloid lineage development is less well understood. We have shown, using heterotypic co-cultures of murine primary hematopoietic stem cells (Lin-Sca-1+ckit+ HSCs) and OP9 stromal cells expressing the Notch ligand Delta1 (OP9-DL1), that Notch signaling derived from cell non-autonomous cues acts as a positive regulator of megakaryocyte fate from LSK cells. Bone marrow transplantation experiments with a constitutively active Notch mutant resulted in enhanced megakaryopoiesis in vivo, with increased MEP numbers and megakaryocyte colony formation. In contrast, expression of dnMAML using a conditional ROSA26 knock-in mouse model significantly impaired megakaryopoiesis in vivo, with a marked decrease in megakaryocyte progenitors. In order to understand the cellular differentiation pathways controlled by Notch, we first examined the ability of various purified progenitor populations to differentiate toward megakaryocytes upon Notch stimulation in vitro. We observed that CMP and MEP, but not GMP, can engage megakaryopoiesis upon Notch stimulation. Our results were consistent with expression analysis of Notch signaling genes in these purified progenitors and were supported by the observation that transgenic Notch reporter mice display higher levels of reporter (i.e. GFP) expression in HSC and MEP, vs. CMP and GMP in vivo. Furthermore, purified progenitors with high GFP expression gave rise to increased numbers of megakarocyte-containing colonies when plated in vitro compared to GFP-negative progenitors. In addition, further purification of the HSC population into long-term (LT), short-term (ST), and lymphoid-primed myeloid progenitors (LMPP) before plating on OP9-DL1 stroma showed that LMPP have a reduced ability to give rise to megakaryocytes compared to the other two populations. These data support the hypothesis that there is an early commitment to erythro/megakaryocytic fate from HSC prior to lymphoid commitment. To gain insight into the molecular mechanism underlying Notch-induced megakaryopoiesis, we performed global gene expression analysis that demonstrated the engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 treated with gamma-secretase inhibitor. Of interest, Runx1 was among the most upregulated genes in HSC co-cultured on OP9-DL1 stroma. To assess whether Notch signaling engages megakaryocytic fate through induction of Runx1, we plated HSC from Runx1 −/− mice on OP9-DL1 stroma. Compared to WT cells, Runx1 −/− HSC had a severely reduced ability to develop into CD41+ cells. In contrast, overexpression of Runx1 in WT HSC was sufficient to induce megakaryocyte fate on OP9 stroma without Notch stimulation. Together, our results indicate that Notch pathway activation induced by stromal cells is an important regulator of cell fate decisions in early progenitors. We show that Notch signaling is upstream of Runx1 during Notch-induced megakaryocyte differentiation and that Runx1 is an essential target of Notch signaling. We believe that these results provide important insight into the pathways controlling megakaryocyte differentiation, and may have important therapeutic potential for megakaryocyte lineage-related disorders.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-14-SCI-14
Author(s):  
Pier Paolo Pandolfi

Abstract Abstract SCI-14 LRF (Leukemia/lymphoma-related factor, also known as POKEMON) is a member of the POZ and Kruppel (POK) family of transcription factors. LRF has been shown to play an essential role in embryonic development and to act as a master regulator of cellular differentiation in virtually any tissue where it is found expressed, including the hemopoietic compartment. As we will discuss, LRF inactivation in the mouse blocks cellular differentiation in both myeloid/erythroid and lymphoid compartments. On the other hand, LRF has been shown to possess a potent proto-oncogenic activity both in vitro and in vivo. In fact, LRF itself can transform primary cells in combination with known oncogenes and is also essential for cellular transformation of mouse embryonic fibroblasts. In addition, overexpression of LRF in immature B and T progenitor cells in vivo in the mouse lead to lethal precursor T-cell lymphoblastic lymphoma/leukemia. In agreement with this notion, LRF is aberrantly expressed in a variety of human cancers, including diffuse large B cell and follicular lymphomas, but also ovarian and breast cancers. Further, the LRF gene is found amplified in a subset of non-small cell lung cancers (NSCLCs), illustrating a direct role in human cancer. However, we speculated that due to the key role of LRF in cell fate decisions, LRF/POKEMON loss could also contribute to tumorigenesis by blocking cellular differentiation. We will discuss provocative in vivo data in support of the notion that LRF/POKEMON can indeed act as a bona fide tumor suppressor representing a compelling example of two-faced cancer genes. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 2 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Christense ME ◽  
Carolan BS

The Notch signaling pathway functions on cell fate decisions in a variety of different organizations in multicellular organisms, such as the hematopoietic system, nervous system, vascular system, skin and pancreas. In the majority of cases, Notch signaling blocks cell differentiation towards a primary process, and instead, direct them to a second differentiation. Altering the differentiation program or forcing it to remain in the undifferentiated state, there are several human diseases linked to defects in genes involved in Notch signaling, aberrant Notch signaling has been observed in a number of human cancers, suggesting a possible role of Notch signaling in tumor formation. Further, Recent study demonstrated an essential role for Notch1 in the corneal epithelial barrier recovery after wounding. We systematically searched the electronic PubMed database for research articles about Notch gene polymorphisms and diseases up to October 2013. Revman 5.0 software was adopted to conduct the meta-analysis. Crude odds ratio (ORs) and 95% confidence intervals (95% CIs) were calculated by either fixed-effects model or random-effects model. The present meta-analysis suggests that Notch gene polymorphisms are associated with the susceptibility of many diseases especially cancer.


2014 ◽  
Vol 2 (1) ◽  
pp. 1-4

The Notch signaling pathway functions on cell fate decisions in a variety of different organizations in multicellular organisms, such as the hematopoietic system, nervous system, vascular system, skin and pancreas. In the majority of cases, Notch signaling blocks cell differentiation towards a primary process, and instead, direct them to a second differentiation. Altering the differentiation program or forcing it to remain in the undifferentiated state, there are several human diseases linked to defects in genes involved in Notch signaling, aberrant Notch signaling has been observed in a number of human cancers, suggesting a possible role of Notch signaling in tumor formation. Further, Recent study demonstrated an essential role for Notch1 in the corneal epithelial barrier recovery after wounding. We systematically searched the electronic PubMed database for research articles about Notch gene polymorphisms and diseases up to October 2013. Revman 5.0 software was adopted to conduct the meta-analysis. Crude odds ratio (ORs) and 95% confidence intervals (95% CIs) were calculated by either fixed-effects model or random-effects model. The present meta-analysis suggests that Notch gene polymorphisms are associated with the susceptibility of many diseases especially cancer.


Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4449-4459 ◽  
Author(s):  
Inge Van de Walle ◽  
Greet De Smet ◽  
Martina Gärtner ◽  
Magda De Smedt ◽  
Els Waegemans ◽  
...  

Abstract Notch signaling critically mediates various hematopoietic lineage decisions and is induced in mammals by Notch ligands that are classified into 2 families, Delta-like (Delta-like-1, -3 and -4) and Jagged (Jagged1 and Jagged2), based on structural homology with both Drosophila ligands Delta and Serrate, respectively. Because the functional differences between mammalian Notch ligands were still unclear, we have investigated their influence on early human hematopoiesis and show that Jagged2 affects hematopoietic lineage decisions very similarly as Delta-like-1 and -4, but very different from Jagged1. OP9 coculture experiments revealed that Jagged2, like Delta-like ligands, induces T-lineage differentiation and inhibits B-cell and myeloid development. However, dose-dependent Notch activation studies, gene expression analysis, and promoter activation assays indicated that Jagged2 is a weaker Notch1-activator compared with the Delta-like ligands, revealing a Notch1 specific signal strength hierarchy for mammalian Notch ligands. Strikingly, Lunatic-Fringe– mediated glycosylation of Notch1 potentiated Notch signaling through Delta-like ligands and also Jagged2, in contrast to Jagged1. Thus, our results reveal a unique role for Jagged1 in preventing the induction of T-lineage differentiation in hematopoietic stem cells and show an unexpected functional similarity between Jagged2 and the Delta-like ligands.


Sign in / Sign up

Export Citation Format

Share Document