Numerical study of cavitating flow characteristics of liquid helium in a pipe

2004 ◽  
Vol 47 (1) ◽  
pp. 149-163 ◽  
Author(s):  
Jun Ishimoto ◽  
Kenjiro Kamijo
Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1103
Author(s):  
Lu Yu ◽  
Haochen Zhang ◽  
Hui Chen ◽  
Zhigang Zuo ◽  
Shuhong Liu

It is known that cavitating flow characteristics and instabilities in inducers can greatly impact the safety and stability of a liquid rocket. In this paper, step casing optimization design (Model OE and Model AE) was carried out for two three-bladed inducers with an equal (Model O) and a varying pitch (Model A), respectively. The unsteady cavitation flow field and accompanied instabilities were studied via numerical simulations. Reductions of the cavity size and fluctuation were observed in cases with a step casing. A significant difference in cavity structures was seen as well. Referring to the pressure distributions on the blades and details of the flow field, the mechanism of cavitation suppression was revealed. This work provides a feasible and convenient method in engineering practice for optimizing the characteristic of the cavitating flow field and instabilities for the inducer.


Author(s):  
Peng Song ◽  
Jinju Sun ◽  
Kaiqiang Li ◽  
Ke Wang ◽  
Changjiang Huo

LNG expander is developed and used as a replacement of a J-T valve in liquefaction process of natural gas to reduce significantly the energy consumption in the LNG plant. Similar to conventional hydraulic turbines, the unexpected cavitation also occurs in the LNG expander. In the present study, cavitating flow in two-phase LNG expander is investigated. With the justified Rayleigh-Plesset cavitation model, cavitating flow characteristics is investigated for the LNG expander in the entire stage environment including an annular bend, nozzle ring, and radial inflow impeller. On the basis of cavitating flow analysis, a coaxial rotating exducer is developed and fitted downstream to the impeller, so as to reduce the cavitation in impeller and subsequently prevent impeller damage. The following are demonstrated: (1) without exducer, significant cavitating flow is encountered at the impeller trailing edge and also in half streamline-wise region, and they are resulted from the viscous dissipation and flow separation; (3) with exducer, the impeller cavitation has diminished entirely but it has occurred in the successive exducer; (3) a use of exducer enhances the energy conversion capability of the rotors, but reduces the overall temperature drop and efficiency of the expander; (4) the design optimization of exducer is required to suppress the exducer cavitation, which also needs to be incorporated with the impeller design to achieve a better match between rotor/stator, so as to maximize the design optimization benefits.


Author(s):  
Kridsanapong Boonpen ◽  
Pruet Kowitwarangkul ◽  
Patiparn Ninpetch ◽  
Nadnapang Phophichit ◽  
Piyapat Chuchuay ◽  
...  

2015 ◽  
Vol 27 (04) ◽  
pp. 1550033 ◽  
Author(s):  
Mahdi Halabian ◽  
Alireza Karimi ◽  
Borhan Beigzadeh ◽  
Mahdi Navidbakhsh

Abdominal aortic aneurysm (AAA) is a degenerative disease defined as the abnormal ballooning of the abdominal aorta (AA) wall which is usually caused by atherosclerosis. The aneurysm grows larger and eventually ruptures if it is not diagnosed and treated. Aneurysms occur mostly in the aorta, the main artery of the chest and abdomen. The aorta carries blood flow from the heart to all parts of the body, including the vital organs, the legs, and feet. The objective of the present study is to investigate the combined effects of aneurysm and curvature on flow characteristics in S-shaped bends with sweep angle of 90° at Reynolds number of 900. The fluid mechanics of blood flow in a curved artery with abnormal aortic is studied through a mathematical analysis and employing Cosmos flow simulation. Blood is modeled as an incompressible non-Newtonian fluid and the flow is assumed to be steady and laminar. Hemodynamic characteristics are analyzed. Grid independence is tested on three successively refined meshes. It is observed that the abrupt expansion induced by AAA results in an immensely disturbed regime. The results may have implications not only for understanding the mechanical behavior of the blood flow inside an aneurysm artery but also for investigating the mechanical behavior of the blood flow in different arterial diseases, such as atherosclerosis.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Hoseyn Sayyaadi

The collapsing phenomenon of cavitation bubbles generates extremely high local pressures and temperatures that can be utilized for the chemical oxidation process. This process is carried out in cavitation reactors. A Venturi tube is one of the most common forms of hydrodynamic cavitation reactors, which is suitable for industrial scale applications. In this work, the hydraulic performance and efficiency in chemical reaction of a new form of hydrodynamic cavitation reactors, which is called “tandem Venturi,” were studied and compared with the conventional type of the single Venturi. The tandem Venturi is used for enhancement of the chemical reaction of hydrodynamic cavitating flow. The reaction enhancement is useful especially for the reaction of aqueous solutions not containing volatile organic compounds (VOCs). The operating pressure, inlet pressure, flow rate, and consequently the cavitation number were controlled and systematically varied for both single and tandem Venturis. Moreover, a specified amount of H2O2 was injected into the flow as required. The effects of operating pressure and the cavitation number on cavitating flow characteristics for single and tandem Venturis were experimentally observed and the results were compared. In addition, the performance of the tandem-Venturi reactor for degradation of non-VOC contaminants (2-chlorophenol) was studied. Its performance was compared with the performance of a conventional Venturi reactor. Two different categories were conducted for the experiments. In the first category, the effect of the net cavitating flow on degradation of non-VOC for the single and tandem Venturis was compared. In the second category, the effect of H2O2 injection into the cavitating flow on degradation of non-VOC (“cavitation-oxidation” process) was studied. The performance of the single and tandem Venturis for the cavitation-oxidation process was compared. Further investigation was performed to assess the advantage of utilizing the tandem Venturi from the viewpoint of efficiency of the oxidation process. The results of the energy efficiency were compared with the corresponding efficiency of the single Venturi. Finally, the relationship between the main parameters of cavitation reaction flow with the chemical performance was discussed.


2018 ◽  
Vol 22 (11) ◽  
pp. 4272-4281 ◽  
Author(s):  
Ik-Tae Im ◽  
Gyu Dong Gwak ◽  
Se Min Kim ◽  
Young Ki Park

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4596
Author(s):  
Piotr Bogusław Jasiński

The presented paper, which is the first of two parts, shows the results of numerical investigations of a heat exchanger channel in the form of a cylindrical tube with a thin insert. The insert, placed concentrically in the pipe, uses the phenomenon of thermal radiation absorption to intensify the heat transfer between the pipe wall and the gas. Eight geometric configurations of the insert size were numerically investigated using CFD software, varying its diameter from 20% to 90% of the pipe diameter and obtaining the thermal-flow characteristics for each case. The tests were conducted for a range of numbers Re = 5000–100,000 and a constant temperature difference between the channel wall and the average gas temperature of ∆T = 100 °C. The results show that the highest increase in the Nu number was observed for the inserts with diameters of 0.3 and 0.4 of the channel diameter, while the highest flow resistance was noted for the inserts with diameters of 0.6–0.7 of the channel diameter. The f/fs(Re) and Nu/Nus(Re) ratios are shown on graphs indicating how much the flow resistance and heat transfer increased compared to the pipe without an insert. Two methods of calculating the Nu number are also presented and analysed. In the first one, the average fluid temperature of the entire pipe volume was used to calculate the Nu number, and in the second, only the average fluid temperature of the annular portion formed by the insert was used. The second one gives much larger Nu/Nus ratio values, reaching up to 8–9 for small Re numbers.


Sign in / Sign up

Export Citation Format

Share Document