scholarly journals alpha-Adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium.

1982 ◽  
Vol 257 (1) ◽  
pp. 190-197 ◽  
Author(s):  
P.F. Blackmore ◽  
B.P. Hughes ◽  
E.A. Shuman ◽  
J.H. Exton
1981 ◽  
Vol 59 (6) ◽  
pp. 617-620 ◽  
Author(s):  
Ralf G. Rahwan ◽  
Michael C. Gerald

It has been previously postulated that 2-n-propyl-3-dimethylamino-5,6-methylenedioxyindene (pr-MDI) exhibits calcium antagonistic properties with an intracellular site of action. The present investigation further substantiates this hypothesis by providing evidence that pr-MDI inhibits caffeine-induced contractures (which are mediated by intracellular calcium) of the isolated rat hemidiaphragm skeletal muscle both in the presence and in the absence of extracellular calcium.


1994 ◽  
Vol 72 (2) ◽  
pp. 634-643 ◽  
Author(s):  
C. Luscher ◽  
J. Streit ◽  
P. Lipp ◽  
H. R. Luscher

1. The reliability of the propagation of action potentials (AP) through dorsal root ganglion (DRG) cells in embryonic slice cultures was investigated during repetitive stimulation at 1–20 Hz. Membrane potentials of DRG cells were recorded intracellularly while the axons were stimulated by an extracellular electrode. 2. In analogy to the double-pulse experiments reported previously, either one or two types of propagation failures were recorded during repetitive stimulation, depending on the cell morphology. In contrast to the double-pulse experiments, the failures appeared at longer interpulse intervals and usually only after several tens of stimuli with reliable propagation. 3. In the period with reliable propagation before the failures, a decrease in the conduction velocity and in the amplitude of the afterhyperpolarization (AHP), an increase in the total membrane conductance, and the disappearance of the action potential “shoulder” were observed. 4. The reliability of conduction during repetitive stimulation was improved by lowering the extracellular calcium concentration or by replacing the extracellular calcium by strontium. The reliability of conduction decreased by the application of cadmium, a calcium channel blocker, 4-amino pyridine, a fast potassium channel blocker, or apamin or muscarine, the blockers of calcium-dependent potassium channels. The reliability of conduction was not effected by blocking the sodium potassium pump with ouabain or by replacing extracellular sodium with lithium. 5. In the period with reliable propagation cadmium, apamin, and muscarine reduced the amplitude of the AHP. The shoulder of the action potential was more pronounced and not sensitive to repetitive stimulation when extracellular calcium was replaced by strontium. It disappeared when cadmium was applied. 6. In DRG somata changes of the intracellular Ca2+ concentration were monitored by measuring the fluorescence of the Ca2+ indicator Fluo-3 with a laser-scanning confocal microscope. During repetitive stimulation, an accumulation of intracellular calcium occurred that recovered very slowly (tens of seconds) after the AP trains. 7. Computer model simulations performed in analogy to the experimental protocols produced conduction failures during repetitive stimulation only when the calcium currents during the APs were reduced. 8. From these findings it is concluded that conduction failures during repetitive stimulation are dependent on an accumulation of intracellular calcium leading to an inactivation of calcium currents, combined with small contributions of an accumulation of extracellular potassium and a summation of slow potassium conductances.


1993 ◽  
Vol 290 (2) ◽  
pp. 617-622 ◽  
Author(s):  
E Poch ◽  
A Botey ◽  
J Gaya ◽  
A Cases ◽  
F Rivera ◽  
...  

The aim of the present study was to evaluate the regulatory relationship between the cytosolic free calcium concentration ([Ca2+]i and cytosolic pH (pHi). [Ca2+]i and pHi were measured using the fluorescent dyes fura-2 and BCECF [2′,7′-bis-(carboxyethyl)-5,6-carboxyfluorescein] respectively. In a medium with 1 mmol/l extracellular calcium, thrombin (2.5 units/ml) induced an increment in [Ca2+]i of 638 +/- 31 nmol/l (n = 5) and an intracellular alkalinization of 0.14 +/- 0.01 pH units (n = 8). Both responses were dependent on the concentration of thrombin, displaying a sigmoidal dose-response pattern. The intracellular alkalinization was dependent upon extracellular Na+ and was amiloride-sensitive, indicating that it was mediated by activation of the Na+/H+ exchanger. When extracellular calcium was chelated with EGTA prior to the addition of thrombin, the intracellular alkalinization was not affected (0.15 +/- 0.02 at 2.5 units/ml thrombin, n = 8). Under these circumstances, the [Ca2+]i increment represents mobilization from internal stores, reaching 157 +/- 42 nmol/l at 2.5 units/ml thrombin. When platelets were preloaded with the intracellular calcium chelator MAPTAM (1,2-bis-5-methylaminophenoxylethane-NNN'-tetraacetoxymethyl acetate) to block the increase in [Ca2+]i induced by thrombin, no increment in pHi was observed. Moreover, MAPTAM-loaded calcium-depleted platelets had a basal pHi that was more acidic than in the presence of 1 mmol/l extracellular calcium (6.93 +/- 0.09 versus 7.14 +/- 0.01, n = 26, P < 0.001). Ionomycin induced an elevation of [Ca2+]i that was accompanied by a concomitant increase in pHi, which was Na(+)-dependent and amiloride-sensitive. [Ca2+]i and pHi increases induced by ionomycin were both dependent on the concentration of ionomycin. In conclusion, an increase in [Ca2+]i is necessary for the agonist-induced activation of the Na+/H+ exchanger in platelets. Non-agonist-induced increases in [Ca2+]i seems to prompt activation of the exchanger. In addition, Ca(2+)-depleted platelets have a more acidic basal pHi, indicating that the basal level of [Ca2+]i is also important for maintaining the basal pHi.


1986 ◽  
Vol 102 (4) ◽  
pp. 1459-1463 ◽  
Author(s):  
R I Sha'afi ◽  
J Shefcyk ◽  
R Yassin ◽  
T F Molski ◽  
M Volpi ◽  
...  

The addition of the calcium ionophore A23187 to rabbit neutrophils increases the amount of actin associated with the cytoskeleton regardless of the presence or absence of calcium in the incubation medium. In the presence of extracellular calcium, the effect of A23187 is biphasic with respect to concentration. The action of the ionophore is rapid, transient, and is inhibited by pertussis toxin, hyperosmolarity, and quinacrine. On the other hand, the addition of pertussis toxin or hyperosmolarity has small if any, effect on the rise in intracellular calcium produced by A23187. While quinacrine does not affect the fMet-Leu-Phe-induced increase in cytoskeletal actin and the polyphosphoinositide turnover, its addition inhibits completely the stimulated increase in Ca-influx produced by the same stimulus. The results presented here suggest that a rise in the intracellular concentration of free calcium is neither necessary nor sufficient for the stimulated increase in cytoskeletal-associated actin. A possible relationship between the lipid remodeling stimulated by chemoattractants and the increased cytoskeletal actin is discussed.


Sign in / Sign up

Export Citation Format

Share Document