Characterization of mismatched SiGe grown on low temperature Si buffer layers by molecular beam epitaxy

1997 ◽  
Vol 175-176 ◽  
pp. 499-503 ◽  
Author(s):  
K.K. Linder ◽  
F.C. Zhang ◽  
J.-S. Rieh ◽  
P. Bhattacharya
1991 ◽  
Vol 241 ◽  
Author(s):  
Bijan Tadayon ◽  
Mohammad Fatemi ◽  
Saied Tadayon ◽  
F. Moore ◽  
Harry Dietrich

ABSTRACTWe present here the results of a study on the effect of substrate temperature, Ts, on the electrical and physical characteristics of low temperature (LT) molecular beam epitaxy GaAs layers. Hall measurements have been performed on the asgrown samples and on samples annealed at 610 °C and 850 °C. Si implantation into these layers has also been investigated.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 366 ◽  
Author(s):  
Alexana Roshko ◽  
Matt Brubaker ◽  
Paul Blanchard ◽  
Todd Harvey ◽  
Kris Bertness

Selective area growth (SAG) of GaN nanowires and nanowalls on Si(111) substrates with AlN and GaN buffer layers grown by plasma-assisted molecular beam epitaxy was studied. For N-polar samples filling of SAG features increased with decreasing lattice mismatch between the SAG and buffer. Defects related to Al–Si eutectic formation were observed in all samples, irrespective of lattice mismatch and buffer layer polarity. Eutectic related defects in the Si surface caused voids in N-polar samples, but not in metal-polar samples. Likewise, inversion domains were present in N-polar, but not metal-polar samples. The morphology of Ga-polar GaN SAG on nitride buffered Si(111) was similar to that of homoepitaxial GaN SAG.


2013 ◽  
Vol 25 (6) ◽  
pp. 1523-1526
Author(s):  
万文坚 Wan Wenjian ◽  
尹嵘 Yin Rong ◽  
韩英军 Han Yingjun ◽  
王丰 Wang Feng ◽  
郭旭光 Guo Xuguang ◽  
...  

2001 ◽  
Vol 693 ◽  
Author(s):  
Tomohiro Yamaguchi ◽  
Yoshiki Saito ◽  
Kenji Kano ◽  
Tomo Muramatsu ◽  
Tsutomu Araki ◽  
...  

AbstractInN films were grown on sapphire (0001) substrates by radio-frequency plasma-assisted molecular beam epitaxy. The InN buffer layers deposited at low temperature were either grown on a substrate with nitridation or on a substrate without nitridation. The InN buffer layers on the nitridated substrates were always single crystalline, whereas the buffer layers on non-nitridated substrates were always polycrystalline. However, even without nitridation process, single crystalline InN films could be grown on the polycrystalline InN buffer layers; in this case, the orientation was always [1120] InN//[1120] sapphire epitaxy, which differed from the [1010] InN//[1120] sapphire epitaxy in films grown with nitridation.


1990 ◽  
Vol 57 (13) ◽  
pp. 1331-1333 ◽  
Author(s):  
A. C. Warren ◽  
J. M. Woodall ◽  
J. L. Freeouf ◽  
D. Grischkowsky ◽  
D. T. McInturff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document