Determination of indole-3-butyric acid in plant culture medium by fluorescence derivatization

1991 ◽  
Vol 43 (3) ◽  
pp. 222-228 ◽  
Author(s):  
F. García Sánchez ◽  
C. Carnero Ruiz ◽  
A. Heredia Bayona
2021 ◽  
Vol 2 (2) ◽  
pp. 538-553
Author(s):  
Natacha Coelho ◽  
Alexandra Filipe ◽  
Bruno Medronho ◽  
Solange Magalhães ◽  
Carla Vitorino ◽  
...  

In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.


2016 ◽  
Vol 20 (1) ◽  
pp. 13-22
Author(s):  
Beata Brzychczyk ◽  
Zbigniew Kowalczyk ◽  
Jan Giełżecki

AbstractThe objective of the paper was to analyse the use of the designed photobioreactor for freshwater microalgae cultivation in the controlled laboratory conditions. The work covered the design and construction of photobioreactors (PBR) and setting up comparative cultivations of freshwater microalgae chlorelli vulgaris along with determination of the biomass growth intensity for a varied amount of supplied culture medium. It was found out that the constructed PBR may be used for microalgae cultivation in the controlled conditions. The impact of the culture medium amount on the growth of chlorelli vulgaris was proved. As a result of the increase of culture medium concentration to 30.1-120.4 ml·l−1 of water, dry mass in photobioreactorsincreased respectively from 1.33 g·dm−3 to 4.68 g·dm−3.


2013 ◽  
Vol 18 (9) ◽  
pp. 1035-1042 ◽  
Author(s):  
Shigeru Oiso ◽  
Miyuki Nobe ◽  
Yuhei Yamaguchi ◽  
Shigeru Umemoto ◽  
Kazuo Nakamura ◽  
...  

Ghrelin, a gastric hormone, is a growth hormone-releasing peptide. Its serine-3 acylation with octanoic acid is essential for its orexigenic activity, and therefore, inhibition of the acylation of ghrelin may help in decreasing appetite and preventing obesity. This study aimed to establish a human gastric cell-based assay system to evaluate candidate inhibitors of octanoylated ghrelin production. In human gastric carcinoma AGS cells, obligatory factors for the posttranslational modification of ghrelin, such as certain prohormone convertases responsible for processing of proghrelin to the mature ghrelin and the enzyme-catalyzing acyl-modification of ghrelin, were well expressed, but ghrelin was expressed at low levels. Accordingly, we transfected a ghrelin-expressing vector into AGS cells and isolated a stable ghrelin-expressing cell line (AGS-GHRL8). AGS-GHRL8 cells secreted octanoylated ghrelin in accordance with the concentrations of octanoic acid in the culture medium. Given that ingested heptanoic acid is used for the acyl-modification of ghrelin, we evaluated whether heptanoic acid inhibits production of octanoylated ghrelin in AGS-GHRL8 cells. Butyric acid was used as a control. Indeed, heptanoic acid predictably decreased the secretion of octanoylated ghrelin, whereas butyric acid did not. The AGS-GHRL8 line established in this study will facilitate the screening of inhibitors of octanoylated ghrelin production.


Sign in / Sign up

Export Citation Format

Share Document