A physically-based semi-empirical effective mobility model for MOSFET compact I–V modeling

2001 ◽  
Vol 45 (1) ◽  
pp. 193-197 ◽  
Author(s):  
K.Y. Lim ◽  
X. Zhou
2016 ◽  
Vol 63 (5) ◽  
pp. 2057-2065 ◽  
Author(s):  
T. K. Maiti ◽  
L. Chen ◽  
H. Zenitani ◽  
H. Miyamoto ◽  
M. Miura-Mattausch ◽  
...  

2021 ◽  
Vol 26 (5) ◽  
pp. 374-386
Author(s):  
K.O. Petrosyants ◽  
◽  
D.S. Silkin ◽  
D.A. Popov ◽  
Bo Li ◽  
...  

Transition from planar MOSFET structures to FinFET 3D structures ensures various radiation type resistance. However, the characteristics of radiation-exposed devices made at different factories vary considerably and it is hard to explain FinFET structures’ radiation resistance dependence on variations of their physical and topological parameters and electrical modes. In this work, a RAD-TCAD model of FinFET on bulk silicon was developed. Additional semi-empirical radiation dependences specific to FinFET structures were introduced into the basic model of a nanometer MOSFET: the charge carrier effective mobility, the traps concentration in the SiO2 and HfO2 oxides and at the Si / SiO2 interface. The model was implemented in the Sen-taurus Synopsys TCAD environment. The model was validated on a test set of FinFET structures with a channel length from 60 nm to 7 nm before and after exposure to gamma irradiation in the dose range up to 1 Mrad. Comparison of the modeled and experimental I-V characteristics has shown an error of no more than 15 %.


2020 ◽  
Vol 12 (16) ◽  
pp. 2573
Author(s):  
Si-Bo Duan ◽  
Xiao-Jing Han ◽  
Cheng Huang ◽  
Zhao-Liang Li ◽  
Hua Wu ◽  
...  

Land surface temperature (LST) is an important variable in the physics of land–surface processes controlling the heat and water fluxes over the interface between the Earth’s surface and the atmosphere. Space-borne remote sensing provides the only feasible way for acquiring high-precision LST at temporal and spatial domain over the entire globe. Passive microwave (PMW) satellite observations have the capability to penetrate through clouds and can provide data under both clear and cloud conditions. Nonetheless, compared with thermal infrared data, PMW data suffer from lower spatial resolution and LST retrieval accuracy. Various methods for estimating LST from PMW satellite observations were proposed in the past few decades. This paper provides an extensive overview of these methods. We first present the theoretical basis for retrieving LST from PMW observations and then review the existing LST retrieval methods. These methods are mainly categorized into four types, i.e., empirical methods, semi-empirical methods, physically-based methods, and neural network methods. Advantages, limitations, and assumptions associated with each method are discussed. Prospects for future development to improve the performance of LST retrieval methods from PMW satellite observations are also recommended.


2011 ◽  
Vol 25 (10) ◽  
pp. 739-745 ◽  
Author(s):  
N. A. AMIN ◽  
M. T. AHMADI ◽  
Z. JOHARI ◽  
S. M. MOUSAVI ◽  
R. ISMAIL

In this letter, we investigate the transport properties of one-dimensional semiconducting Graphene nanoribbons (GNRs) with parabolic band structure near the Dirac point. The analytical model of effective mobility is developed by using the conductance approach, which differs from the conventional method of extracting the effective mobility using the well-known Matthiessen rule. Graphene nanoribbons conductance model developed was applied in the Drude model to obtain the effective mobility, which then gives nearly close comparison with the experimental data.


2017 ◽  
Vol 17 (20) ◽  
pp. 12697-12708 ◽  
Author(s):  
Guadalupe Sanchez ◽  
Antonio Serrano ◽  
María Luisa Cancillo

Abstract. Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.


2002 ◽  
Vol 742 ◽  
Author(s):  
Nelson S. Saks

ABSTRACTThe mobility of electrons in inversion layers at SiC/SiO2 interfaces μinv has been characterized in 4H- and 6H-SiC using Hall effect measurements. In order to understand the cause of the low mobilities typically observed in SiC MOS devices, a semi-empirical mobility model has been developed based on a previous model for silicon inversion layers. Using this model, two scattering mechanisms, surface phonon and Coulomb scattering from high densities of electrons trapped at the SiC/SiO2 interface, are found to account reasonably well for the behavior of the mobility. The model employs a changing density of trapped electrons as a function of gate voltage to accurately model Coulomb scattering. Surprisingly, evidence of surface roughness scattering is not observed in any SiC MOS device.


Author(s):  
Cihangir Koycegiz ◽  
Meral Buyukyildiz ◽  
Serife Yurdagul Kumcu

Abstract There are many empirical, semi-empirical and mathematical methods that have been developed to estimate sediment yield by researchers. In the last decades, the advancement in computer technologies has increased the use of mathematical models as they can solve the system more rapidly and accurately. The Soil and Water Assessment Tool (SWAT) is one of the physically based hydrological models that is preferred to compute sediment yield. In this study, spatial and temporal analysis of sediment yield in the Çarşamba Stream located at the Konya Closed Basin has been investigated using the SWAT model. Streamflow and sediment data collected during the 2003–2015 time period have been used in the analysis. Consequently, the SWAT presented satisfactory results compared with R2 = 0.68, Nash–Sutcliffe Efficiency (NSE) = 0.68 in calibration and R2 = 0.76, NSE = 0.66 in validation. According to the model results, spatial asymmetry in terms of sediment yield was determined in the sub-basins of the study area.


Sign in / Sign up

Export Citation Format

Share Document