Modified embedded atom method calculations for reconstructed (110) surfaces of face-centered cubic metals

2000 ◽  
Vol 445 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Takahiro Yamaghishi ◽  
Kunio Takahashi ◽  
Tadao Onzawa
2010 ◽  
Vol 452-453 ◽  
pp. 845-848
Author(s):  
Shu Sheng Xu ◽  
Xiang Guo Zeng ◽  
Hua Yan Chen

The voids in pure Aluminum always exit in the manufacturing process. The Modified Embedded Atom Method (MEAM) potential is employed in the molecular dynamics (MD) simulation at atomic scale to investigate the interaction between voids under the impact loading for pure Aluminum. The distance between the voids distributed along the loading orientation affects the failure mechanism seriously. The results show that there are 3 kinds of mechanisms with the change of the distance between voids: 1) coalescence takes place within a critical distance between voids under extra loading, 2) when the distance between voids reaches a certain value, each void cracks at 4 locations along with the slide direction <110> of face-centered cubic (fcc), respectively, 3) a stress shield zone appears when the ligament between the voids is at the size between the cases mentioned above, which brings out the phenomena that each of the voids cracks only at 2 locations, and no crack appeared at the stress shield zone.


1998 ◽  
Vol 539 ◽  
Author(s):  
J. Belak ◽  
R. Minich

AbstractThe dynamic fracture (spallation) of ductile metals is known to initiate through the nucleation and growth of microscopic voids. Here, we apply atomistic molecular dynamics modeling to the early growth of nanoscale (2nm radius) voids in face centered cubic metals using embedded atom potential models. The voids grow through anisotropic dislocation nucleation and emission into a cuboidal shape in agreement with experiment. The mechanism of this nucleation process is presented. The resulting viscous growth exponent at late times is about three times larger than expected from experiment for microscale voids, suggesting either a length scale dependence or a inadequacy of the molecular dynamics model such as the perfect crystal surrounding the void.


2008 ◽  
Vol 86 (7) ◽  
pp. 935-941 ◽  
Author(s):  
J -M Zhang ◽  
Y Yang ◽  
K -W Xu ◽  
V Ji

The structural stability and theoretical strength of a Au face-centered cubic (FCC) crystal under uniaxial loading is investigated by combining the modified analytical embedded atom method (MAEAM) with Born stability criteria. The results show that under sufficient compression, there exists a stress-free body-centered cubic (BCC) phase, which is unstable and slips spontaneously to a stress-free metastable body-centered tetragonal phase by consuming internal energy. The structural energy difference between the BCC and FCC phases is in good agreement with the experimental value. The stable region ranged from –2.21 GPa to 6.31 GPa in the theoretical strength or from –9.83% to 7.87% in the strain correspondingly.PACS Nos.: 62.20.–x, 61.50.Ks, 81.05.Bx


2020 ◽  
Vol 65 (6) ◽  
pp. 54-60
Author(s):  
Thao Nguyen Thi ◽  
Hang Trinh Thi Thu

The structure and mechanical properties of Cu80Ni20 and Cu50Ni50 alloys with the size of 4000 atoms have been investigated using molecular dynamic (MD) simulation. The interactions between atoms of the system were calculated by the Sutton-Chen type of embedded atom method. Using a cooling rate of 0.01 K\ps, we find that both Ni and Cu atoms are crystallized into face centered cubic (fcc) and the hexagonal close packed (hcp) phases when the sample was cooled down to 300 K. The atomic concentration of CuNi alloy samples have a different effect on this crystallization. The transformation to the crystalline phase is analyzed through the Common Neighbor Analysis (CNA) methods. Furthermore, we focus on the dependence of the mechanical properties of CuNi alloy on pressure and atomic concentration


1998 ◽  
Vol 13 (7) ◽  
pp. 1919-1927 ◽  
Author(s):  
S. S. Pohlong ◽  
P. N. Ram

The universal form of embedding function suggested by Banerjea and Smith together with a pair-potential of the Morse form are used to obtain embedded atom method (EAM) potentials for fcc metals: Cu, Ag, Au, Ni, Pd, and Pt. The potential parameters are determined by fitting to the Cauchy pressure (C12 − C44)/2, shear constant GV = (C11 − C12 + 3C44)/5, and C44, the cohesive energy and the vacancy formation energy. The obtained parameters are utilized to calculate the unrelaxed divacancy binding energy and the unrelaxed surface energies of three low-index planes. The calculated quantities are in reasonable agreement with the experimental values except perhaps the divacancy energy in a few cases. In a further application, lattice dynamics of these metals are discussed using the present EAM potentials. On comparison with experimental phonons, the agreement is good for Cu, Ag, and Ni, while in the other three metals, Au, Pd, and Pt, the agreement is not so good. The phonon spectra are in reasonable agreement with the earlier calculations. The frequency spectrum and the mean square displacement of an atom in Cu are in agreement with the experiment and other calculated results.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Sign in / Sign up

Export Citation Format

Share Document