Changes in cell surface primary cilia and microvilli concurrent with measurements of fluid flow across the rabbit corneal endothelium ex vivo

1998 ◽  
Vol 30 (6) ◽  
pp. 634-643 ◽  
Author(s):  
M.J. Doughty
Author(s):  
Leticia Labat-de-Hoz ◽  
Armando Rubio-Ramos ◽  
Javier Casares-Arias ◽  
Miguel Bernabé-Rubio ◽  
Isabel Correas ◽  
...  

Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the “alternative” route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Ji Li ◽  
Yina Ma ◽  
Jonathan Bogan

Introduction: The adaptive metabolic regulation of glucose and fatty acid in the heart plays a critical role in limiting cardiac damage caused by ischemia and reperfusion (I/R). TUG (tether containing a UBX domain, for GLUT4) can be cleaved to mobilize glucose transporter GLUT4 from intracellular vesicles to the cell surface in skeletal muscle and adipose in response to insulin stimulation. The energy sensor AMP-activated protein kinase (AMPK) plays an important cardioprotective role in response to ischemic insults by modulating GLUT4 translocation. Hypothesis: TUG is one of the downstream targets of AMPK in the heart. TUG could be phosphorylated by ischemic AMPK and cleaved to dissociate with GLUT4 and increase GLUT4 translocation in the ischemic heart. Methods: In vivo regional ischemia by ligation of left anterior coronary artery and ex vivo isolated mouse heart perfusion Langendorff system were used to test the hypothesis. Results: Antithrombin (AT) is an endogenous AMPK agonist in the heart and used to define the role of TUG in regulating GLUT4 trafficking during ischemia and reperfusion in the heart. AT showed its cardioprotective function through recovering cardiac pumping function and activating AMPK. The results showed that AMPK activation by AT treatment was through LKB1 and Sesn2 complex. Furthermore, the ex vivo heart perfusion data demonstrated that AT administration significantly increase GLUT4 translocation, glucose uptake, glycolysis and glucose oxidation during ischemia and reperfusion (p<0.05 vs . vehicle). Moreover, AT treatment increased abundance of a TUG cleavage product (42 KD) in response to I/R. The TUG protein was clearly phosphorylated by activated AMPK in HL-1 cardiomyocytes. The in vivo myocardial ischemia results demonstrated that ischemic AMPK activation triggers TUG cleavage and significantly increases GLUT4 translocation to the cell surface. Moreover, an augmented interaction between AMPK and TUG was observed during ischemia. Conclusions: Cardiac AMPK activation stimulates TUG cleavage and causes the dissociation between TUG and GLUT4 in the intracellular vesicles. TUG is a critical mediator that modulates cardiac GLUT4 translocation to cell surface and enhances glucose uptake by AMPK signaling pathway.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicole Ming Sie ◽  
Gary Hin-Fai Yam ◽  
Yu Qiang Soh ◽  
Matthew Lovatt ◽  
Deepinder Dhaliwal ◽  
...  

AbstractThe corneal endothelium located on the posterior corneal surface is responsible for regulating stromal hydration. This is contributed by a monolayer of corneal endothelial cells (CECs), which are metabolically active in a continuous fluid-coupled efflux of ions from the corneal stroma into the aqueous humor, preventing stromal over-hydration and preserving the orderly arrangement of stromal collagen fibrils, which is essential for corneal transparency. Mature CECs do not have regenerative capacity and cell loss due to aging and diseases results in irreversible stromal edema and a loss of corneal clarity. The current gold standard of treatment for this worldwide blindness caused by corneal endothelial failure is the corneal transplantation using cadaveric donor corneas. The top indication is Fuchs corneal endothelial dystrophy/degeneration, which represents 39% of all corneal transplants performed. However, the global shortage of transplantable donor corneas has restricted the treatment outcomes, hence instigating a need to research for alternative therapies. One such avenue is the CEC regeneration from endothelial progenitors, which have been identified in the peripheral endothelium and the adjacent transition zone. This review examines the evidence supporting the existence of endothelial progenitors in the posterior limbus and summarizes the existing knowledge on the microanatomy of the transitional zone. We give an overview of the isolation and ex vivo propagation of human endothelial progenitors in the transition zone, and their growth and differentiation capacity to the corneal endothelium. Transplanting these bioengineered constructs into in vivo models of corneal endothelial degeneration will prove the efficacy and viability, and the long-term maintenance of functional endothelium. This will develop a novel regenerative therapy for the management of corneal endothelial diseases.


2004 ◽  
Vol 167 (4) ◽  
pp. 757-767 ◽  
Author(s):  
Tae-Hwa Chun ◽  
Farideh Sabeh ◽  
Ichiro Ota ◽  
Hedwig Murphy ◽  
Kevin T. McDonagh ◽  
...  

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix–degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP–dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., β3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2964-2964
Author(s):  
Xia Tong ◽  
Sharon Lea Aukerman ◽  
Karen Lin ◽  
Natasha Aziz ◽  
Cheryl Goldbeck ◽  
...  

Abstract CD40 is expressed on chronic lymphocytic leukemia (CLL) cells, and CD40 activation leads to signaling critical for cell survival and proliferation. We have previously described a novel, fully human IgG1 anti-CD40 antagonistic monoclonal antibody, CHIR-12.12, generated in XenoMouse® mice (Abgenix, Inc.), and have demonstrated that it inhibits normal human B cell proliferation and survival and mediates potent antibody-dependent cellular cytotoxicity (ADCC) against primary CLL and non-Hodgkin’s lymphoma cells. In this study, we examined the ability of CHIR-12.12 to modulate cytokine production by primary CLL cells and compared the ADCC activity of CHIR-12.12 with rituximab against primary CLL cells. Primary CLL cells stimulated with CD40L produced a variety of cytokines, including IL-10, TNF-α , IL-8, GM-CSF, IL-6, MCP-1, and MIP-1β. Addition of CHIR-12.12 to primary CLL cells inhibited CD40L-mediated production of these cytokines. Cytokine production by primary CLL cells cultured with CHIR-12.12 alone in the absence of CD40L did not exceed levels produced by CLL cells cultured in medium. These data suggest that CHIR-12.12 is a potent antagonist for CD40L-mediated cytokine production by primary CLL cells and shows no agonistic activity by itself. We next compared the relative ADCC activity of CHIR-12.12 and rituximab against ex vivo primary CLL cells from 8 patients. CHIR-12.12 exhibited greater ADCC than rituximab against CLL cells from all patients. The average percent of maximum lysis by CHIR-12.12 and rituximab were 49 ± 16% and 31 ± 14%, respectively. CHIR-12.12 was greater than 10-fold more potent than rituximab, as measured by ED50 values (14.1 pM versus 155.5 pM, respectively). Quantitative CD20 and CD40 density on CLL cells and the degree of antibody internalization were investigated as potential reasons for the difference in ADCC activity. The greater ADCC potency and efficacy of CHIR-12.12 was not dependent on a higher density of cell surface CD40 molecules, as there were 1.3 to 14-fold higher numbers of CD20 than CD40 molecules on the cell surface. Antibody internalization studies using primary CLL cells conducted by flow cytometry and confocal microscopy show that upon binding to CD40 at 37°C, CHIR-12.12 remains uniformly distributed on the cell surface, even after 3 hours. In contrast, after binding at 37°C, rituximab is redistributed into caps and internalized. These data suggest that the potent ADCC activity of CHIR-12.12 may be partly related to its ability to remain on the surface of target cells uniformly, allowing optimal interaction with effector cells. Taken together, these results suggest that CHIR-12.12 may be effective at mediating potent ADCC against CLL cells in vivo. CHIR-12.12 is currently in Phase I trials for B-cell malignancies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3021-3021 ◽  
Author(s):  
V. Michael Holers ◽  
Istvan Mazsaroff ◽  
Hillary Akana ◽  
Christopher G. Smith ◽  
J. Woodruff Emlen ◽  
...  

Abstract Abstract 3021 Poster Board II-997 The complement system is activated through three pathways: classical, lectin/mannose and alternative. Polymorphisms and mutations that promote Complement Alternative Pathway (CAP) activity are associated with human diseases including atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). The complement system is also centrally involved in many hemolytic disorders, including paroxysmal nocturnal hemoglobinuria (PNH) where the CAP initiates complement activation resulting in intravascular hemolysis (IVH) after engagement of C5 and formation of the membrane attack complex (MAC). Systemic neutralization of C5 with the anti-C5 monoclonal antibody, eculizumab, abrogates IVH when plasma concentrations are maintained above the minimal efficacious concentration (Cmin = 35 μg/mL). However, because eculizumab does not inhibit CAP activity prior to C5, C3 fragments (C3frag) continue to covalently bind to and accumulate on PNH red blood cells (RBCs). Clearance by the reticuloendothelial system of PNH RBCs that are C3frag-coated is a putative cause of extravascular hemolysis (EVH) in eculizumab-treated patients. In order to selectively modulate CAP activity, we developed TT30, a novel therapeutic 65kD fusion protein linking the first four short consensus repeat (SCR) domains of human complement receptor type 2 (CR2/CD21) with the first five SCR of human factor H (fH). CR2 SCR1-4 encompasses the antigen-fixed C3frag (iC3b, C3dg and C3d) binding domain. Factor H is the primary soluble phase, negative regulator of CAP activity functioning via the SCR1-5 domains. The unique mechanism of TT30 utilizes CR2 SCR1-4 to recognize and bind to C3frag on cells in which complement activation is occurring, thus delivering cell surface-targeted inhibition of CAP activity via fH SCR 1-5. TT30 both prevents CAP-dependent hemolysis of rabbit RBCs in human serum and blocks accumulation of C3frag on the RBC surface. By design, TT30 should also be a potent inhibitor of the CAP, but with minimal inhibition of the complement classical (CCP) and mannose (lectin; CMP) pathways. To test this hypothesis, we utilized sensitive pharmacodynamic assays that allow in vitro or ex vivo assessment in an ELISA format of individual complement pathway activity present in human serum. In this format, TT30 is a potent and selective inhibitor of CAP activity in normal human complement-preserved serum, with EC50 and EC100 values of ∼0.1 and 1 μg/mL serum. As predicted by the use of fH in its construction, TT30 is a much less potent inhibitor of the CCP and CMP, with EC100 values of ∼65 μg/mL. By contrast, in these assays a monoclonal and polyclonal anti-C5 antibody each demonstrate non-selective inhibition of CAP and CCP activity at all effective concentrations. TT30 activity is dependent upon CR2 binding to C3frag, as an anti-CR2 monoclonal antibody reverses the surface inhibition of CAP activity. This surface-targeting approach to delivering fH SCR1-5 results in a molecule with a 10-fold potency gain in CAP inhibition relative to added purified fH and an ∼30-fold potency gain relative to the total fH present in the serum used in the assay. TT30 administered as a single IV injection at 20 mg/kg to rats, rabbits and monkeys results in Cmax values of ∼400, 500 and 300 μg/mL and concentration-dependent inhibition of CAP activity. At serum concentrations of TT30 that induced maximal (100%) inhibition of systemic CAP activity for up to 12 hours, CCP activity is modestly (∼35-60%) inhibited for only 2 hours. CAP activity returns to baseline levels in a predictable fashion. Pharmacokinetic analysis indicates no gender-related differences and the expected scaling of parameters across species. TT30 is pharmacologically active in monkeys, rabbits and mice. TT30 administered as a single subcutaneous injection at 20 mg/kg to monkeys results in Cmax values of ∼25 μg/mL, and EC100 values identical to those observed with IV administration, but with a 3-fold prolongation of the maximal pharmacodynamic effect. The novel therapeutic TT30 has been shown in vitro and ex vivo to deliver cell surface-targeted control of CAP activation with minimal CCP and CMP inhibition and effective blockade of C3frag accumulation and MAC formation. As a result, TT30 has potential utility for the treatment of complement-mediated diseases such as PNH, AMD and aHUS, in which cell surface-targeted control of CAP activation may be clinically beneficial. Disclosures Holers: Taligen Therapeutics: Employment, Equity Ownership, Patents & Royalties, Research Funding. Mazsaroff:Taligen Therapeutics: Employment. Akana:Taligen Therapeutics: Employment. Smith:Taligen Therapeutics: Employment. Emlen:Taligen Therapeutics: Employment, Equity Ownership. Marians:Taligen Therapeutics: Employment. Horvath:Taligen Therapeutics: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2564-2564 ◽  
Author(s):  
Elodie Lainey ◽  
Marie Sebert ◽  
Cyrielle Bouteloup ◽  
Carole Leroy ◽  
Sylvain Thepot ◽  
...  

Abstract Abstract 2564 Background: Erlotinib (Erlo) was originally developed as an epidermal growth factor receptor inhibitor, yet it also exerts antileukemic “off-target” effects, in vitro and in vivo in MDS and AML (Boehrer et al., Blood, 2008). In a preliminary pre-clinical study, we observed that Erlo increased chemosensitivity to current AML drugs in different AML cell lines and in ex vivo AML patient cells (n=3) (ASH 2010, 2163). Those first results suggested an implication of ABC-transporters in the potentiation of apoptosis. Here, we bring direct evidence for Erlo's ability to hinder efflux pumps and to decrease their expression on AML cells. Methods: Drug efflux via ABC-transporters (substrate: mitoxantrone-MTZ or doxorubicin-Dox), and specific efflux via P-gp (substrates: DioC23 and Rho-123), MRP (s: Calcein and CDCFDA) and BCRP (s: Hoechst 33342) were quantified by FACS following incubation with 10mM Erlo. Intracellular VP-16) content was quantified by Rapid Resolution Liquid Chromatography (RRLC). Biochemical inhibitors of the respective ABC-transporters (CSA (1μM), verapamil (Vera-10μM), MK571 (10μM), KO143 (500nM) served as positive controls. To assess chemosensitivity, 10mM Erlo was combined to AraC (100nM), Dox (100nM), or VP-16 (1mM) and apoptosis over-time (24, 48, 72h) quantified by DioC3(6)/PI staining. Assessment of sensitivity to the drug combinations listed above were carried out in KG-1 cells, and its more immature variant KG-1a and in ex vivo CD34+ marrow cells from AML patients (AML post MDS n=5, de novo AML n=5). P-gp's ATPase activity was quantified with the luminescence-based Pgp-Gloä Assay System. Surface expression of P-gp was determined by FACS analysis and total protein expression of MRP, BCRP and P-gp by immunoblot analysis. Functional relevance of signaling pathways was tested using the SRC inhibitor PP2 (10μM) and the mTOR inhibitor Rapamicin (10nM). Results: We found that I) Erlo inhibited efflux via P-gp, MRP and BCRP as demonstrated by increased intracellular retention of DioC23/Rho-123, Calcein/CDCFDA and Hoechst 33342, respectively, andby its ability to retain MTX (300nM) and Dox (200nM) intracellularly II) Inhibition of drug efflux was higher in KG-1 than in KG-1a cellss, in agreement with a lower expression of P-gp and BCRP on KG-1a as compared to KG-1 cells; III) Quantification of VP-16 by RRLC after incubation with or without Erlo showed the ability of Erlo to increase intracellular VP-16 contents by approximately 60%; IV) Erlo increased ATPase activity in a dose-dependant manner, supporting the notion that Erlo is a competitive inhibitor of P-gp; IV) Erlo combined to VP-16 induced synergistic effects on apoptosis in KG-1 cells, and to a lesser extent in KG-1a (48h KG-1: Erlo 20%, VP-16 38%, Erlo+VP16 78%, KG-1a 48h: Erlo 10%, VP-16: 12%, Erlo+VP16: 35%); V) 48h of incubation with Erlo reduced cell surface expression of P-gp in KG-1 cells by 50%, whereas total P-gp protein expression remained unchanged, suggesting that Erlo interferes exclusively with the protein form expressed on the cell surface, VI) Decrease of P-gp cell surface expression was recapitulated upon incubation with PP2 (10μM) or Rapamicin (10nM); VII) the combination of Erlo+VP-16 in 10 AML-patient samples induced synergistic effects on apoptosis in 5 of them and additive effects in 3 of them. Conclusions: We here confirm that Erlo increases sensitivity towards chemotherapeutic agents subjected to drug efflux via ABC-transporters and delineate the molecular pathways conveying these effects. Disclosures: Fenaux: Celgene: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document