Two‐Step Affinity Purification of Multiubiquitylated Proteins from Saccharomyces cerevisiae

Author(s):  
Thibault Mayor ◽  
Raymond J. Deshaies
2007 ◽  
Vol 56 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Byung-Kwon Lee ◽  
Kyung-Sik Jung ◽  
Cagdas Son ◽  
Heejung Kim ◽  
Nathan C. VerBerkmoes ◽  
...  

1987 ◽  
Vol 7 (10) ◽  
pp. 3678-3687 ◽  
Author(s):  
B K Haarer ◽  
J R Pringle

Budding cells of the yeast Saccharomyces cerevisiae possess a ring of 10-nm-diameter filaments, of unknown biochemical nature, that lies just inside the plasma membrane in the neck connecting the mother cell to its bud (B. Byers and L. Goetsch, J. Cell Biol. 69:717-721, 1976). Mutants defective in any of four genes (CDC3, CDC10, CDC11, and CDC12) lack these filaments and display a pleiotropic phenotype that involves abnormal bud growth and cell-wall deposition and an inability to complete cytokinesis. We fused the cloned CDC12 gene to the Escherichia coli lacZ and trpE genes and used the resulting fusion proteins to raise polyclonal antibodies specific for the CDC12 gene product. In immunofluorescence experiments with affinity-purified antibodies, the neck region of wild-type and mutant cells stained in patterns consistent with the hypothesis that the CDC12 gene product is a constituent of the ring of 10-nm filaments. Without careful affinity purification of the CDC12-specific antibodies, these staining patterns were completely obscured by the staining of residual cell wall components in the neck by antibodies present even in the "preimmune" sera of all rabbits tested.


2008 ◽  
Vol 19 (9) ◽  
pp. 3934-3943 ◽  
Author(s):  
Mary K. Dienhart ◽  
Rosemary A. Stuart

The ADP/ATP carrier (AAC) proteins play a central role in cellular metabolism as they facilitate the exchange of ADP and ATP across the mitochondrial inner membrane. We present evidence here that in yeast (Saccharomyces cerevisiae) mitochondria the abundant Aac2 isoform exists in physical association with the cytochrome c reductase (cytochrome bc1)-cytochrome c oxidase (COX) supercomplex and its associated TIM23 machinery. Using a His-tagged Aac2 derivative and affinity purification studies, we also demonstrate here that the Aac2 isoform can be affinity-purified with other AAC proteins. Copurification of the Aac2 protein with the TIM23 machinery can occur independently of its association with the fully assembled cytochrome bc1-COX supercomplex. In the absence of the Aac2 protein, the assembly of the cytochrome bc1-COX supercomplex is perturbed, whereby a decrease in the III2-IV2assembly state relative to the III2-IV form is observed. We propose that the association of the Aac2 protein with the cytochrome bc1-COX supercomplex is important for the function of the OXPHOS complexes and for the assembly of the COX complex. The physiological implications of the association of AAC with the cytochrome bc1-COX-TIM23 supercomplex are also discussed.


2015 ◽  
Author(s):  
Brian H Carrick ◽  
Lixuan HaO ◽  
Philip J Smaldino ◽  
David R Engelke

Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. The tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background in a single step. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent will allow isolation of rare or unstable protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or chromatin-associated assemblies.


2004 ◽  
Vol 32 (6) ◽  
pp. 899-903 ◽  
Author(s):  
K.K. Lee ◽  
P. Prochasson ◽  
L. Florens ◽  
S.K. Swanson ◽  
M.P. Washburn ◽  
...  

Epigenetics is the alteration of phenotype without affecting the genotype. An underlying molecular mechanism of epigenetics is the changes of chromatin structure by covalent histone modifications and nucleosome reorganization. In the yeast, Saccharomyces cerevisiae, two of the most well-studied macromolecular complexes that perform these epigenetic changes are the ATP-dependent Swi/Snf chromatin-remodelling complex and the SAGA histone acetyltransferase complex. To understand fully the mechanism by which these large protein complexes perform their functions in the cell, it is crucial that all the subunits of these complexes are identified. In an attempt to identify new subunits associated with SAGA and Swi/Snf, we used tandem affinity purification, followed by a multidimensional protein identification technology to analyse the subunit composition. Our analysis identified two novel proteins, one associated with SAGA, YPL047W (Sgf11), and another associated with Swi/Snf, Rtt102.


2015 ◽  
Vol 6 (3) ◽  
pp. 573-578 ◽  
Author(s):  
Brian H. Carrick ◽  
Linxuan Hao ◽  
Philip J. Smaldino ◽  
David R. Engelke

2007 ◽  
Vol 18 (10) ◽  
pp. 3845-3859 ◽  
Author(s):  
Benjamin R. Strub ◽  
Manoja B.K. Eswara ◽  
Jacqueline B. Pierce ◽  
Dev Mangroo

Utp8p is an essential nucleolar component of the nuclear tRNA export machinery in Saccharomyces cerevisiae. It is thought to act at a step between tRNA maturation/aminoacylation and translocation of the tRNA across the nuclear pore complex. To understand the function of Utp8p in nuclear tRNA export, a comprehensive affinity purification analysis was conducted to identify proteins that interact with Utp8p in vivo. In addition to finding proteins that have been shown previously to copurify with Utp8p, a number of new interactions were identified. These interactions include aminoacyl-tRNA synthetases, the RanGTPase Gsp1p, and nuclear tRNA export receptors such as Los1p and Msn5p. Characterization of the interaction of Utp8p with a subset of the newly identified proteins suggests that Utp8p most likely transfer tRNAs to the nuclear tRNA export receptors by using a channeling mechanism.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0196632 ◽  
Author(s):  
Pin-Chao Liao ◽  
Istvan R. Boldogh ◽  
Stephanie E. Siegmund ◽  
Zachary Freyberg ◽  
Liza A. Pon

2010 ◽  
Vol 38 (4) ◽  
pp. 875-878 ◽  
Author(s):  
Mike P. Williamson ◽  
Michael J. Sutcliffe

In the present article, we describe the two standard high-throughput methods for identification of protein complexes: two-hybrid screens and TAP (tandem affinity purification) tagging. These methods have been used to characterize the interactome of Saccharomyces cerevisiae, showing that the majority of proteins are part of complexes, and that complexes typically consist of a core to which are bound ‘party’ and ‘dater’ proteins. Complexes typically are merely the sum of their parts. A particularly interesting type of complex is the metabolon, containing enzymes within the same metabolic pathway. There is reasonably good evidence that metabolons exist, but they have not been detected using high-thoughput assays, possibly because of their fragility.


Sign in / Sign up

Export Citation Format

Share Document