97/03178 Evaluation of the dynamic performance of a hot water tank with built-in heating coil

1997 ◽  
Vol 38 (4) ◽  
pp. 259
Author(s):  
A. Castell ◽  
C. Sole´ ◽  
M. Medrano ◽  
M. Nogue´s ◽  
L. F. Cabeza

Most of the storage systems available on the market use water as storage medium. Enhancing the storage performance is necessary to increase the performance of most systems. The stratification phenomenon is employed to improve the efficiency of storage tanks. Heat at an intermediate temperature, not high enough to heat up the top layer, can still be used to heat the lower, colder layers. There are a lot of parameters to study the stratification in a water tank such as the Mix Number and the Richardson Number among others. The idea studied here was to use these stratification parameters to compare two tanks with the same dimensions during charging and discharging processes. One of them is a traditional water tank and the other is a PCM-water (a water tank with a Phase Change Material). A PCM is good because it has high energy density if there is a small temperature change, since then the latent heat is much larger than the sensible heat. On the other hand, the temperature change in the top layer of a hot water store with stratification is usually small as it is held as close as possible at or above the temperature for usage. In the system studied the Phase Change Material is placed at the top of the tank, therefore the advantages of the stratification still remain. The aim of this work is to demonstrate that the use of PCM in the upper part of a water tank holds or improves the benefit of the stratification phenomenon.


1987 ◽  
Vol 8 (9) ◽  
pp. 357-363 ◽  
Author(s):  
Richard M. Vickers ◽  
Victor L. Yu ◽  
S. Sue Hanna ◽  
Paul Muraca ◽  
Warren Diven ◽  
...  

AbstractWe conducted a prospective environmental study for Legionella pneumophila in 15 hospitals in Pennsylvania. Hot water tanks, cold water sites, faucets, and show-erheads were surveyed four times over a one-year period. Sixty percent (9/15) of hospitals surveyed were contaminated with L pneumophila. Although contamination could not be linked to a specific municipal water supplier, most of the contaminated supplies came from rivers. Parameters found to be significantly associated with contamination included elevated hot water temperature, vertical configuration of the hot water tank, older tanks, and elevated calcium and magnesium concentrations of the water (P < 0.05). This study suggests that L pneumophila contamination could be predicted based on design of the distribution system, as well as physicochemical characteristics of the water.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4039
Author(s):  
Dawid Taler ◽  
Tomasz Sobota ◽  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper presents the medium temperature monitoring system based on digital proportional–integral–derivative (PID) control. For industrial thermometers with a complex structure used for measuring the temperature of the fluid under high pressure, the accuracy of the first-order model is inadequate. A second-order differential equation was applied to describe a dynamic response of a temperature sensor placed in a heavy thermowell (industrial thermometer). The quality of the water temperature control system in the tank was assessed when measuring the water temperature with a jacketed thermocouple and a thermometer in an industrial casing. A thermometer of a new design with a small time constant was also used to measure temperature. The quality of water temperature control in the hot water storage tank was evaluated using a classic industrial thermometer and a new design thermometer. In both cases, there was a K-type sheathed thermocouple inside the thermowell. Reductions in the time constant of the new thermometer are achieved by means of a steel casing with a small diameter hole inside which the thermocouple is precisely fitted. The time constants of the thermometers were determined experimentally with a jump in water temperature. A digital controller was designed to maintain the preset temperature in an electrically heated hot water tank. The function of the regulator was to adjust the power of the electrical heater to maintain a constant temperature of the liquid in the tank.


2019 ◽  
Vol 158 ◽  
pp. 5034-5040
Author(s):  
Di Qin ◽  
Zhun (Jerry) Yu ◽  
Tingting Yang ◽  
Shuishen Li ◽  
Guoqiang Zhang

2014 ◽  
Author(s):  
Portia Murray ◽  
Stephen J. Harrison ◽  
Ben Stinson

Heat pump water heaters are increasing in popularity due to their increased energy efficiency and low environmental impact. This paper describes the experimental testing of a transcritical CO2 heat pump water heater at Queen’s University. A modified 4.5 kW Eco-Cute unit was studied. It sourced heat from a constant temperature water supply and rejected the heat to a 273 litre hot water tank through a gas-cooler. The high temperatures that occur in the gas-cooler of this unit make it ideally suited for natural convection, (i.e., thermosyphon) circulation on the potable water side. This has the potential to reduce pumping power, simplify system operation and design, and increase thermal stratification in the hot water storage tank. This configuration, however, is susceptible to the accumulation of sediments, scale and mineral deposits (i.e., fouling) in geographic regions where high mineral deposits may be present in the water supply. To counteract fouling in these cases, a passive back-flushing system was proposed to prevent the accumulation of deposits on the heat transfer surfaces of the gas-cooler. As hot water is drawn from the system, the cold “mains” supply water is directed through the gas-cooler in the reverse direction of normal operation, scouring the heat transfer surfaces and dissolving deposits of inverse-soluble salts which are a major contributor to fouling on hot heat transfer surfaces. The gas-cooler used was a specially designed unit that, although offering high performance in a compact unit, may be susceptible to the fouling and blockage of the heat transfer passages when used at thermosyphon flow rates. Experiments were conducted to evaluate the effects of the back-flush operation on heat pump performance (i.e., COP) and operation. These were conducted under controlled laboratory conditions, at a range of draw flow rates and temperatures, and are summarized in this paper.


2019 ◽  
Vol 111 ◽  
pp. 06014
Author(s):  
Andrew Lyden ◽  
Paul Tuohy

Decentralised energy systems provide the potential for adding energy system flexibility by separating demand/supply dynamics with demand side management and storage technologies. They also offer an opportunity for implementing technologies which enable sector coupling benefits, for example, heat pumps with controls set to use excess wind power generation. Gaps in this field relating to planning-level modelling tools have previously been identified: thermal characteristic modelling for thermal storage and advanced options for control. This paper sets out a methodology for modelling decentralised energy systems including heat pumps and thermal storage with the aim of assisting planning-level design. The methodology steps consist of: 1) thermal and electrical demand and local resource assessment methods, 2) energy production models for wind turbines, PV panels, fuel generators, heat pumps, and fuel boilers, 3) bi-directional energy flow models for simple electrical storage, hot water tank thermal storage with thermal characteristics, and a grid-connection, 4) predictive control strategy minimising electricity cost using a 24-hour lookahead, and 5) modelling outputs. Contributions to the identified gaps are examined by analysing the sensible thermal storage model with thermal characteristics and the use of the predictive control. Future extensions and applications of the methodology are discussed.


Sign in / Sign up

Export Citation Format

Share Document