Expression of Carboxymethylcellulase on the Surface of Escherichia Coli Using Pseudomonas Syringae Ice Nucleation Protein

1998 ◽  
Vol 22 (5) ◽  
pp. 348-354 ◽  
Author(s):  
Heung-Chae Jung ◽  
Joon-Hyun Park ◽  
Seung-Hwan Park ◽  
Jean-Michel Lebeault ◽  
Jae-Gu Pan
2019 ◽  
Author(s):  
Johannes Kassmannhuber ◽  
Sergio Mauri ◽  
Mascha Rauscher ◽  
Nadja Brait ◽  
Lea Schöner ◽  
...  

Abstract. An N-terminal truncated form of the ice nucleation protein (INP) of Pseudomonas syringae lacking the transport sequence for the localization of InaZ in the outer membrane was fused to N- and C- terminal inner membrane (IM) anchors and expressed in Escherichia coli C41. The ice nucleation (IN) activity of the corresponding living recombinant E. coli catalyzing heterogeneous ice formation of super-cooled water at high subzero temperatures was tested by droplet freezing assay. Median freezing temperature (T50) of the parental living E. coli C41 cells without INP was detected at −20.1 °C and with inner membrane anchored INPs at T50 value between −7 °C and −9 °C demonstrating that IM anchored INPs facing the luminal IM site are able to induce IN from the inside of the bacterium almost similar to bacterial INPs located at the outer membrane. Bacterial Ghosts (BGs) derived from the different constructs showed first droplet freezing values between −6 °C and −8 °C whereas C41 BGs alone without carrying IM anchored INPs exhibit a T50 of −18.9 °C. The more efficient IN of INP-BGs compared to their living parental strains can be explained by the free access of IM anchored INP constructs to ultrapure water filling the inner space of the BGs. The cell killing rate of -NINP carrying E. coli at subzero temperatures is higher when compared to survival rates of the parental C41 strain.


2012 ◽  
Vol 12 (22) ◽  
pp. 10667-10677 ◽  
Author(s):  
E. Attard ◽  
H. Yang ◽  
A.-M. Delort ◽  
P. Amato ◽  
U. Pöschl ◽  
...  

Abstract. Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.


2005 ◽  
Vol 4 (3) ◽  
pp. 187-193 ◽  
Author(s):  
Mohammed A.A. Sarhan . ◽  
Mustaffa Musa . ◽  
Norazmi Mohd Nor . ◽  
Zainul F. Zainuddin .

2020 ◽  
Vol 15 (3) ◽  
pp. 031003
Author(s):  
Johannes Kassmannhuber ◽  
Sergio Mauri ◽  
Mascha Rauscher ◽  
Nadja Brait ◽  
Lea Schöner ◽  
...  

1999 ◽  
Vol 6 (4) ◽  
pp. 499-503 ◽  
Author(s):  
Young-Don Kwak ◽  
Seung-Ku Yoo ◽  
Eui-Joong Kim

ABSTRACT A new system designed for cell surface display of recombinant proteins on Escherichia coli has been evaluated for expression of eukaryotic viral proteins. Human immunodeficiency virus type 1 (HIV-1) gp120 was fused to the C terminus of ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, fluorescence-activated cell-sorting analysis, whole-cell enzyme-linked immunosorbent assay, and ice nucleation activity assay confirmed the successful expression of HIV-1 gp120 on the surface ofEscherichia coli. This study shows that the INP system can be used for the expression of eukaryotic viral proteins. There is also a possibility that the INP system can be used as an AIDS diagnostic system, an oral vaccine delivery system, and an expression system for various heterologous higher-molecular-weight proteins.


2021 ◽  
Vol 10 (26) ◽  
Author(s):  
Rustam M. Buzikov ◽  
Tatsiana A. Pilipchuk ◽  
Leonid N. Valentovich ◽  
Emilia I. Kalamiyets ◽  
Andrey M. Shadrin

Pseudomonas syringae BIM B-268 is the strain used for in vitro testing of the efficiency of Multiphage, a bacteriophage-based biopesticide produced in Belarus. The genome sequence of this strain consists of a single circular chromosome harboring the genes encoding the ice nucleation protein, syringopeptin biosynthesis, and types III and VI secretion systems.


Sign in / Sign up

Export Citation Format

Share Document