Regulatory effect of temperature and antigen upon immunity in ectothermic vertebrates. II. Primary enhancement of anti-hapten antibody response at high and low temperatures

1977 ◽  
Vol 1 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Eli Weiss ◽  
Ramy R. Avtalion
1970 ◽  
Vol 48 (6) ◽  
pp. 377-381 ◽  
Author(s):  
Carol Colthart ◽  
Margot R. Roach

The oxygen consumption [Formula: see text] of isolated segments of 40 human umbilical arteries was measured at different temperatures from 5 °C to 37 °C with a modified Fenn microrespirometer. The values varied from 8 μl/g per h at 8 °C to 70 μl/g per h at 37 °C. The Arrhenius plot was nonlinear, and the Q10 varied from 0.11 (30–40 °C) to 1.8 (20–30 °C) and 7.1 (10–20 °C). This suggests that the metabolic processes may be different at high and low temperatures. The results were consistent for at least 5 h post partum, and did not seem to vary from one segment of the cord to another.


Author(s):  
Jimmy Karlsson

AbstractThis paper estimates the effect of exogenous short-term temperature changes on the economy of the United States, using high-resolution data on monthly exports which has not been previously exploited in the literature. The detailed disaggregation of U.S. export data into sectors enables a top-down estimation of the net effect of temperature, while also identifying potential mechanisms at the micro level. Using an econometric specification which allows high parametric flexibility, I find significantly negative effects of both high and low temperatures. The magnitude of the effects corresponds to an average reduction of annual U.S. exports by 0.20%, following a uniform 2 $$^{\circ }$$ ∘ C temperature increase. Industry heterogeneity in the temperature effect suggests disparate mechanisms behind hot and cold days, which are important to take into account when estimating the future economic damages of climate change in the United States.


Author(s):  
Jochen Rau

Even though the general framework of statistical mechanics is ultimately targeted at the description of macroscopic systems, it is illustrative to apply it first to some simple systems: a harmonic oscillator, a rotor, and a spin in a magnetic field. These applications serve to illustrate how a key function associated with the Gibbs state, the so-called partition function, is calculated in practice, how the entropy function is obtained via a Legendre transformation, and how such systems behave in the limits of high and low temperatures. After discussing these simple systems, this chapter considers a first example where multiple constituents are assembled into a macroscopic system: a basic model of a paramagnetic salt. It also investigates the size of energy fluctuations and how—in the case of the paramagnet—these fluctuations scale with the number of constituents.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Jorge Gavara ◽  
Ana Piedra-Buena ◽  
Estrella Hernandez-Suarez ◽  
Manuel Gamez ◽  
Tomas Cabello ◽  
...  

Phthorimaea operculella is one of the most important pests causing damage to stored potatoes. In this work, the effect of temperature (at 10, 20 and 30 °C) on the predation of pest eggs by Blattisocius tarsalis was studied in the laboratory. In addition, the effect of three predatory release rates on two pest densities was studied under microcosm conditions. The results showed that B. tarsalis maintains its predatory capacity at low temperatures (10 °C), obtaining an efficiency of 49.66 ± 5.06% compared to the control. In turn, at 20 °C, a maximum efficacy of 78.17 ± 4.77% was achieved, very similar to that presented at 30 °C (75.57 ± 4.34%). Under microcosm conditions and at low pest density (10 eggs/container), the mortality due to the mite was 96.97 ± 3.03%, 81.82 ± 8.84%, and 84.85 ± 8.30%, respectively, for the three predatory release rates (5, 10 or 20 mites/container). At the high infestation level, the pest control ranged from 61.54 ± 9.21% to 92.31 ± 2.74%, depending on the predatory release rate. The results obtained show that B. tarsalis could be a relevant control agent against P. operculella under non-refrigerated potato storage conditions, as well as in the first stages of their storage under refrigerated conditions.


2018 ◽  
Vol 171 ◽  
pp. 13001
Author(s):  
Alexander Botvina ◽  
Marcus Bleicher

The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).


1984 ◽  
Vol 26 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Linda J. Reha-Krantz ◽  
Sükran Parmaksizoglu

The effect of temperature on genetically well-defined mutational pathways was examined in the bacteriophage T4. The mutational site was a T4 rII ochre mutant which could revert to rII+ via a transversion or to the amber convertant via a transition. Temperature did not strongly affect any of the pathways examined in a wild-type background; however, increased temperature reduced the mutational activity of a mutator DNA polymerase mutant. Possible models to explain the role of temperature in mutagenesis are discussed as well as the significance of low temperatures for in vitro mutagenesis reactions.Key words: bacteriophage T4, mutator, transition, transversion, temperature effects.


2016 ◽  
Vol 30 (04) ◽  
pp. 1650022 ◽  
Author(s):  
Zeshun Chen ◽  
Changming Xiao ◽  
Zhen Yao

Supposing the Ising model system is placed in a temperature field with constant high and low temperatures on both sides, then the system will shift to a non-equilibrium steady state with a certain temperature gradient. With the assistance of local temperature, the steady state of two-dimensional Ising model is studied via the avenue of Monte Carlo simulations in this paper. It is found that the local energy and magnetization are continuous, but there is a sharp decline in the magnetization strength when the temperature falls into the range of 2.2–2.4. The local magnetization [Formula: see text], when the temperature [Formula: see text]. It is the indication that the system is in the ferromagnetic state. However, when [Formula: see text], [Formula: see text], and then the ferromagnetic state turns into the paramagnetic state. Furthermore, a completely new and special state of Ising model system and the corresponding material is possible if the high and low temperatures of the temperature field are larger and smaller than the critical value of the system, respectively. According to this material, the magnetic driving machine, from which a new energy source can be obtained, is qualitatively discussed at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document