Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing

1998 ◽  
Vol 51 (2-3) ◽  
pp. 327-341 ◽  
Author(s):  
Claudia Witschi ◽  
Eric Doelker
2015 ◽  
Vol 2 (2) ◽  
pp. 174
Author(s):  
Tetty Kemala ◽  
Achmad Sjahriza ◽  
Hendra Adijuwana ◽  
Mardiana Hardianti

 ABSTRACT  Polymer has many applications in human life, one of them is in the field of health. Polymer synthetics like polylactic acid (PLA), polyglycolic acid (PGA), poly(ε-caprolactone) (PCL), and poly(lactic acid-co-glycolic acid) (PLGA) were kind of polyesters that is many used in field   of health. Many researchers have already made research about degradation of PLA, PGA, PCL, and PLGA. However, there is no one doing research about degradation of combination between this two polymers, one of them is polyblend of  PLGA and PCL. Polyblend were made of four compositions, that were PLGA(90:10):PCL 3:1, PLGA(75:25):PCL 3:1, PLGA(90:10):PCL 5:1, and PLGA(75:25):PCL 5:1. Degradation was carried out for eight weeks by using phosphate buffer pH 7.4 and incubation temperature of 37°C. Degradation of the polymer was observed by mass remained, and intrinsic viscosity. The result showed that composition PLGA(75:25):PCL 5:1 was the fastest in degradation compared to other compositions. It was showed by the decrease in mass until 89.06% and the change in intrinsic viscosity until 20.13%. Keywords: PLGA, PCL   


2011 ◽  
Vol 197-198 ◽  
pp. 164-167 ◽  
Author(s):  
Zheng Guo ◽  
Jin Jing Chen ◽  
Pei Hua Zhang

A tubal knitted scaffold fabricated from poly(lactic acid) (PLA) yarns was given in this work. The performance of the scaffold during degradation in vitro and the morphology of the scaffold with cells (monkey dermal fibroblasts) were examined. The scaffold fabricated from poly(glycolic acid) (PGA) yarns was manufactured as the control. Results showed that the PLA scaffold could keep much more tensile strength during degradation in vitro, compared with the PGA scaffold. However, cell attachment and proliferation on the PGA scaffold were better than on the PLA scaffold.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 217 ◽  
Author(s):  
Ghada El-Zaafarany ◽  
Mahmoud Soliman ◽  
Samar Mansour ◽  
Marco Cespi ◽  
Giovanni Palmieri ◽  
...  

The use of nanocarrier delivery systems for direct nose to brain drug delivery shows promise for achieving increased brain drug levels as compared to simple solution systems. An example of such nanocarriers is emulsomes formed from lipid cores surrounded and stabilised by a corona of phospholipids (PC) and a coating of Tween 80, which combines the properties of both liposomes and emulsions. Oxcarbazepine (OX), an antiepileptic drug, was entrapped in emulsomes and then localized in a poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer thermogel. The incorporation of OX emulsomes in thermogels retarded drug release and increased its residence time (MRT) in rats. The OX-emulsome and the OX-emulsome-thermogel formulations showed in vitro sustained drug release of 81.1 and 53.5%, respectively, over a period of 24 h. The pharmacokinetic studies in rats showed transport of OX to the systemic circulation after nasal administration with a higher uptake in the brain tissue in case of OX-emulsomes and highest MRT for OX-emulsomal-thermogels as compared to the IN OX-emulsomes, OX-solution and Trileptal® suspension. Histopathological examination of nasal tissues showed a mild vascular congestion and moderate inflammatory changes around congested vessels compared to saline control, but lower toxic effect than that reported in case of the drug solution.


Biomaterials ◽  
2008 ◽  
Vol 29 (3) ◽  
pp. 337-349 ◽  
Author(s):  
Meng Deng ◽  
Lakshmi S. Nair ◽  
Syam P. Nukavarapu ◽  
Sangamesh G. Kumbar ◽  
Tao Jiang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


Sign in / Sign up

Export Citation Format

Share Document