Effects of neonatal treatment with Tyr-MIF-1 and naloxone on the long-term body weight gain induced by repeated postnatal stressful stimuli

Peptides ◽  
1999 ◽  
Vol 20 (12) ◽  
pp. 1425-1430 ◽  
Author(s):  
Antonio d’Amore ◽  
Alberto Loizzo
Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5094-5101 ◽  
Author(s):  
En-Ju D. Lin ◽  
Amanda Sainsbury ◽  
Nicola J. Lee ◽  
Dana Boey ◽  
Michelle Couzens ◽  
...  

Neuropeptide Y (NPY) is a key regulator of energy homeostasis and is implicated in the development of obesity and type 2 diabetes. Whereas it is known that hypothalamic administration of exogenous NPY peptides leads to increased body weight gain, hyperphagia, and many hormonal and metabolic changes characteristic of an obesity syndrome, the Y receptor(s) mediating these effects is disputed and unclear. To investigate the role of different Y receptors in the NPY-induced obesity syndrome, we used recombinant adeno-associated viral vector to overexpress NPY in mice deficient of selective single or multiple Y receptors (including Y1, Y2, and Y4). Results from this study demonstrated that long-term hypothalamic overexpression of NPY lead to marked hyperphagia, hypogonadism, body weight gain, enhanced adipose tissue accumulation, hyperinsulinemia, and other hormonal changes characteristic of an obesity syndrome. NPY-induced hyperphagia, hypogonadism, and obesity syndrome persisted in all genotypes studied (Y1−/−, Y2−/−, Y2Y4−/−, and Y1Y2Y4−/− mice). However, triple deletion of Y1, Y2, and Y4 receptors prevented NPY-induced hyperinsulinemia. These findings suggest that Y1, Y2, and Y4 receptors under this condition are not crucially involved in NPY’s hyperphagic, hypogonadal, and obesogenic effects, but they are responsible for the central regulation of circulating insulin levels by NPY.


Metabolism ◽  
2012 ◽  
Vol 61 (6) ◽  
pp. 812-822 ◽  
Author(s):  
Esther Fuente-Martín ◽  
Miriam Granado ◽  
Cristina García-Cáceres ◽  
Miguel A. Sanchez-Garrido ◽  
Laura M. Frago ◽  
...  

1990 ◽  
Vol 124 (3) ◽  
pp. 381-386 ◽  
Author(s):  
M. J. Gardner ◽  
D. J. Flint

ABSTRACT Treatment of neonatal rats on days 2–5 with antibodies against rat GH (rGH) markedly reduced body weight gain and serum concentrations of insulin-like growth factor-I for 6–8 weeks in both females and males, after which weight gain normalized without evidence of catch-up growth. There were no significant effects on serum prolactin, tri-iodothyronine or corticosterone. Testis and ovarian weights were reduced, although only in proportion to body size. In females, but not males, the treated rats, though lighter, had increased fat deposition in the parametrial depot. Pituitary weight was considerably reduced over 100 days later, as was the pituitary content of GH, but not prolactin. The response to GH-releasing factor of both male and female rats was also greatly reduced at this time. Taken together with the fact that these rGH antibodies can bind directly to somatotrophs, we propose that the long-term effects of the antibodies are induced by specific somatotroph destruction. Journal of Endocrinology (1990) 124, 381–386


2012 ◽  
Vol 92 (13) ◽  
pp. 2638-2643 ◽  
Author(s):  
Haiyan Chen ◽  
Yiling Wang ◽  
Lichuan Ma ◽  
Jiajun Zhao ◽  
Yinyin Li ◽  
...  

2009 ◽  
Vol 78 (8) ◽  
pp. 951-958 ◽  
Author(s):  
Edson Lucas Santos ◽  
Kely de Picoli Souza ◽  
Elton Dias da Silva ◽  
Elice Carneiro Batista ◽  
Paulo J. Forcina Martins ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4533
Author(s):  
Yugo Kato ◽  
Yoshinori Aoki ◽  
Koji Fukui

Obesity induces serious diseases such as diabetes and cardiovascular disease. It has been reported that obesity increases the risk of cognitive dysfunction. Cognitive dysfunction is a characteristic symptom of Alzheimer’s and Parkinson’s diseases. However, the detailed mechanisms of obesity-induced cognitive dysfunction have not yet been elucidated. The onset and progression of obesity-induced severe secondary diseases such as diabetes, cardiovascular events, and hypertension are deeply connected to oxidative stress. We hypothesized that obesity induces cognitive dysfunction via acceleration of reactive oxygen species (ROS) production. Vitamin E, which is a lipophilic vitamin, has strong antioxidative effects and consists of two groups: tocopherols and tocotrienols. Recently, it has been demonstrated that tocotrienols have strong neuroprotective and anti-obesity effects. In this study, we fed mice a high-fat diet (HFD) from 9 to 14 months of age and assessed the effect of tocotrienols treatment on body weight, brain oxidation levels, and cognitive function. The results revealed that treatment with tocotrienols inhibited body weight gain; further, tocotrienols reached the brain and attenuated oxidation in HFD-treated mice. These results indicate that tocotrienols have anti-obesity effects and inhibit obesity-induced brain oxidation.


Sign in / Sign up

Export Citation Format

Share Document