A multi-scale approach for the response of a 3D carbon/carbon composite under shock loading

2001 ◽  
Vol 61 (3) ◽  
pp. 409-415 ◽  
Author(s):  
Olivier Allix ◽  
Michel Dommanget ◽  
Michel Gratton ◽  
Pierre-Louis Héreil
2020 ◽  
Vol 75 (4) ◽  
pp. 285-291
Author(s):  
Jiao-Nan Yuan ◽  
Hai-Chao Ren ◽  
Yong-Kai Wei ◽  
Wei-Sen Xu ◽  
Guang-Fu Ji ◽  
...  

AbstractMicroscopic electron properties of α-hexahydro-1,3,5-trinitro-1,3,5-triazine (α-RDX) with different shock wave velocities have been investigated based on molecular dynamics together with multi-scale shock technique. The studied shock wave velocities are 8, 9 and 10 km ⋅ s−1. It has been said that the shock sensitivity and reaction initiation of explosives are closely relevant with their microscopic electron properties. The reactions, including the reaction products, which are counted from the trajectory during the simulations are analysed first. The results showed that the number of the products strictly rely on shock wave velocities. The reaction rates and decomposition rates are also studied, which showed the differences between the different shock velocities. The results of electron properties show that α-RDX is a wide-gap insulator in the ground state and the metallisation conditions of shocked RDX are determined, which are lower than under-static high pressure.


2019 ◽  
Vol 97 (4) ◽  
pp. 245-253
Author(s):  
Zi-Qiu Bai ◽  
Jing Chang ◽  
Guang-Fu Ji ◽  
Ni-Na Ge

The anisotropy of impact sensitivity and microscopic electron properties of the cyclotrimethylene trinitramine (C3H6N6O6) (RDX) under shock loading are investigated in our work. The simulation is performed using molecular dynamic (MD) simulations in conjunction with multi-scale shock technique (MSST). By calculating the microscopic electronic properties and combining the thermodynamic properties, we predict that the metallization pressure of the RDX crystal is approximately 170 GPa under shock loading, which is slightly less than the metallization pressure under hydrostatic pressure. We also found that the microscopic electronic properties are related to the impact sensitivity. When the shock loading is along the z direction, the time of the transition from the insulating state to the metallization of the RDX crystal lags behind the shock loading along the x or y direction. Therefore, we predict that the RDX crystal has a lower sensitivity when the shock loading is along the z direction.


2018 ◽  
Vol 81 (1) ◽  
pp. 10401 ◽  
Author(s):  
Mohamed Khebbab ◽  
Mouloud Feliachi ◽  
Mohamed El Hadi Latreche

In this present paper, a simulation of eddy current non-destructive testing (EC NDT) on unidirectional carbon fiber reinforced polymer is performed; for this magneto-dynamic formulation in term of magnetic vector potential is solved using finite element heterogeneous multi-scale method (FE HMM). FE HMM has as goal to compute the homogenized solution without calculating the homogenized tensor explicitly, the solution is based only on the physical characteristic known in micro domain. This feature is well adapted to EC NDT to evaluate defect in carbon composite material in microscopic scale, where the defect detection is performed by coil impedance measurement; the measurement value is intimately linked to material characteristic in microscopic level. Based on this, our model can handle different defects such as: cracks, inclusion, internal electrical conductivity changes, heterogeneities, etc. The simulation results were compared with the solution obtained with homogenized material using mixture law, a good agreement was found.


Author(s):  
D. Faulkner ◽  
G.W. Lorimer ◽  
H.J. Axon

It is now generally accepted that meteorites are fragments produced by the collision of parent bodies of asteroidal dimensions. Optical metallographic evidence suggests that there exists a group of iron meteorites which exhibit structures similar to those observed in explosively shock loaded iron. It seems likely that shock loading of meteorites could be produced by preterrestrial impact of their parent bodies as mentioned above.We have therefore looked at the defect structure of one of these meteorites (Trenton) and compared the results with those made on a) an unshocked ‘standard’ meteorite (Canyon Diablo)b) an artificially shocked ‘standard’ meteorite (Canyon Diablo) andc) an artificially shocked specimen of pure α-iron.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Sign in / Sign up

Export Citation Format

Share Document